РЕКОМЕНДАЦИИ

РЕКОМЕНДАЦИИ

ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ

КОМПЛЕКС СТАНДАРТОВ НА АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ

АРХИТЕКТУРА ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ В СИСТЕМАХ ПРОМЫШЛЕННОЙ АВТОМАТИЗАЦИИ

общие положения

Издание официальное

РЕКОМЕНДАЦИИ

Рекомендации

ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ

Комплекс стандартов на автоматизированные системы. Архитектура локальных вычислительных сетей в системах промышленной автоматизации

P 50-34.119-90

Общие положения

ОКСТУ 0034

Дата введения 01.01.92

Настоящие рекомендации распространяются на автоматизированные системы проектирования и изготовления (АСПИ) и автоматизированные учрежденческие информационные системы (АУИС) и устанавливают состав и структуру применяемых в них локальных вычислительных сетей (ЛВС) и основные требования к характеристикам этих ЛВС.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

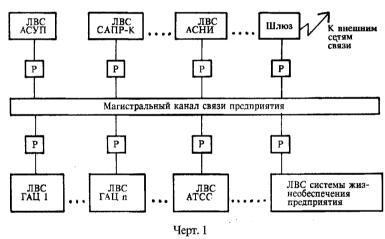
- 1.1. АСПИ представляют собой комплекс взаимосвязанных автоматизированных систем (АС) различного назначения (гибкие производственные системы (ГПС), системы автоматизации проектирования (САПР), системы автоматизированного управления (АСУ) и др. АС, применяемые для промышленной автоматизации). Основой интеграции АС в АСПИ являются локальные вычислительные сети (ЛВС).
- 1.2. Концептуальной основой ЛВС является базовая эталонная модель взаимосвязи открытых систем (ВОС).
- 1.3. Вычислительные сети АСПИ должны базироваться на унифицированных наборах протоколов и интерфейсов, соответствующих эталонной модели ВОС, для связи разнородных ЭВМ, интеллектуального оборудования и устройств связи.

2. АРХИТЕКТУРА АСПИ И ЕЕ ЛВС

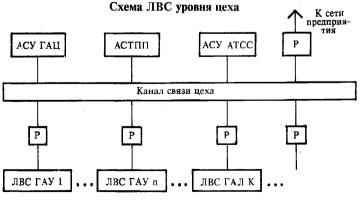
- 2.1. В автоматизированном производстве выделяют пять уровней.
- 2.1.1. 0-й уровень (устройства с числовым программным управлением УЧПУ, локальные системы управления ЛСУ, программируемые контроллеры ПК) должен обеспечивать локальное управление в реальном масштабе времени отдельными техническими устройствами. В качестве таких устройств могут выступать: станок, робот, кран-штабелер, транспортный робот и т. д. ПК, ЛСУ или УЧПУ, управляющие этими устройствами, должны следить за физическими параметрами технологических процессов, вырабатывать управляющие воздействия на силовую автоматику, осуществлять при необходимости соответствующие преобразования сигналов.
- 2.1.2. 1-й уровень (АСУ ГПМ) должен обеспечивать согласованную работу в реальном масштабе времени взаимосвязанной группы технических устройств типа гибкого производственного модуля (ГПМ). ГПМ может состоять, например из станка, робота и передаточного стола.
- 2.1.3. 2-й уровень (АСУ ГАУ, ГАЛ) должен обеспечивать согласованную работу группы ГПМ в соответствии с технологическим маршрутом, одного гибкого автоматизированного участка (ГАУ) или гибкой автоматизированной линии (ГАЛ). ГАУ (ГАЛ) может быть обрабатывающим, сборочным, складским, измерительным, транспортным и т. п.
- 2.1.4. 3-й уровень (АСУ ГАЦ) должен обеспечивать организационно-экономическое и организационно-технологическое управление дискретным, непрерывным или дискретно-непрерывным произ-

Издание официальное

Перепечатка воспрещена

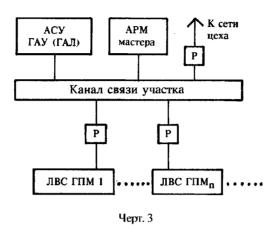

водством в гибком автоматизированном цехе (ГАЦ) и технологическую подготовку производства. На этом уровне должны осуществляться планирование, учет, контроль и регулирование производства по основным технико-экономическим показателям, решаться задачи координированного управления ходом производства, организовываться комплектация рабочих мест заготовками, инструментом и оснасткой, необходимыми для выполнения производственных заданий. Здесь же должен быть реализован центр управления автоматизированной транспортно-складской системой (ATCC) цеха.

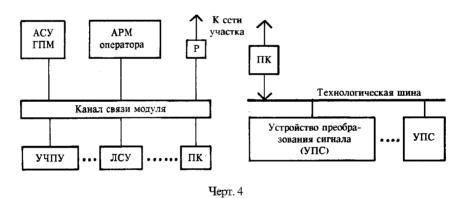
2.1.5. 4-й уровень (АСУП, АСНИ, САПР-К) должен обеспечивать организационно-экономичес-кое управление предприятием в целом. Здесь в соответствии с жизненным циклом изделия и в рамках соответствующих подразделений должны проводиться НИР и ОКР, техническая подготовка производства, управление испытаниями и т. п.


К этому же уровню относится АСУ интегрированной системы жизнеобеспечения предприятия, в задачу которой входит: автоматизированное управление тепло-, водо-, воздухо- и энергоснабжением предприятия; защита территории, отдельных зданий и помещений предприятия от несанкционированного доступа; управление противопожарными системами и системами охраны окружающей среды.

- 2.2. Связи между уровнями и между элементами уровней должны обеспечиваться вычислительной сетью, объединяющей оконечные системы предприятия, которыми могут быть: АС (АСТПП, АСУ ГАЦ и т. д.); ЛВС (ЛВС ГАУ, ЛВС САПР и т. д.) и ЭВМ (рабочие места, оборудование с ЧПУ и т. п.).
- 2.2.1. Объединение отдельных ЛВС уровней предприятия и цеха и интегрированной системы жизнеобеспечения предприятия должно осуществляться через ретрансляторы с помощью магистрального канала связи предприятия (черт. 1).

Схема ЛВС уровня предприятия


2.2.2. Сеть цехового уровня должна объединять автоматизированные системы цехового уровня, а также ЛВС участков (линий) (черт. 2).


Черт. 2

- 2.2.3. Сеть уровня участка (линии) должна объединять АС уровней участка и модуля (черт. 3).
- 2.2.4. Сеть уровня модуля должна объединять АС уровня модуля и устройства управления отдельными техническими устройствами (черт. 4).

Схема ЛВС уровня участка

Схема ЛВС уровня модуля

2.2.5. Сопряжение сети уровня участка с сетью уровня цеха и сети уровня модуля с сетью уровня участка должна осуществляться с помощью ретрансляторов.

3. ТРЕБОВАНИЯ К ЛВС АСПИ

ЛВС реализуется посредством соединения отдельных каналов связи различной физической природы (электрических, оптических) и топологии (моноканал, шина, кольцо) через ретрансляторы, коммутационно-согласующие устройства и блоки доступа.

- 3.1. Требования к ЛВС уровня предприятия
- 3.1.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до 10 км.
 - 3.1.2. ЛВС уровня предприятия должна допускать подключение до 100—1000 оконечных систем.
- 3.1.3. ЛВС уровня предприятия должна допускать обмен информацией объемом до нескольких Мбайт через промежутки времени в несколько часов (суток).
 - 3.1.4. ЛВС уровня предприятия должна обеспечивать время реакции не более 2 с.
- 3.1.5. Надежность сети должна обеспечиваться телесредствами обнаружения, локализации и изоляции отказов, а также телесредствами соответствующей реконфигурации сети для обхода отка-

зов. Эти средства могут быть ручными или автоматическими и управляться на месте (локально) или удаленно.

- 3.2. Требования к ЛВС уровня цеха
- 3.2.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до $1\,\mathrm{km}$.
 - 3.2.2. Сеть цеха должна допускать подключение до 100 оконечных систем.
- 3.2.3. Сеть цеха должна допускать обмен информацией объемом до 1 Мбайт через промежутки времени в несколько минут (часов).
 - 3.2.4. Сеть цеха должна обеспечивать время реакции не более 2 с.
- 3.2.5. Сеть цеха должна допускать ее эксплуатацию в производственных условиях, включая повышенную влажность и температуру, повышенную вибрацию, повышенное электромагнитное излучение, нестабильность питающего напряжения, запыленность.
- 3.2.6. Работоспособность сети должна сохраняться без ухудшения ее характеристик в случае ремонта, включения и исключения любых сетевых компонентов.
 - 3.3. Требования к ЛВС уровня участка
- 3.3.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до 100 м.
 - 3.3.2. Сеть участка должна допускать подключение до 100 оконечных систем.
- 3.3.3. Сеть участка должна допускать обмен информацией объемом до 100 кбайт через промежутки времени в несколько секунд (минут).
 - 3.3.4. Сеть участка должна функционировать в режиме реального времени.
 - 3.3.5. Условия эксплуатации аналогичны сети цеха.
- 3.3.6. Требования к надежности аналогичны требованиям к сети цеха. В случае управления быстрыми или опасными процессами управления сети (в части реконфигурации) должно осуществляться автоматически.
 - 3.4. Требования кЛВС уровня модуля

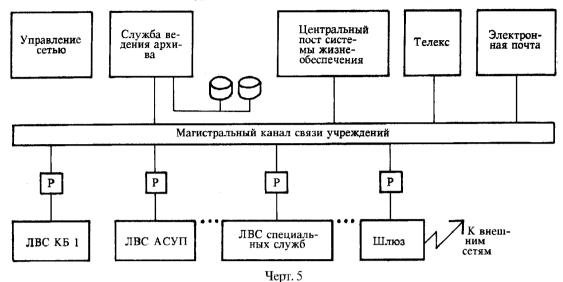
Для управления непрерывными технологическими процессами на уровне модуля может потребоваться канал связи, отличающийся от ЛВС дискретного оборудования (см. черт. 4).

- 3.4.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояние до 10 м.
 - 3.4.2. Сеть модуля должна допускать подключение до 10 оконечных систем.
- 3.4.3. Сеть модуля должна допускать обмен информацией до 0,1 Кбайт через промежутки времени от долей секунды до нескольких минут.
 - 3.4.4. Сеть модуля должна допускать управление оборудованием в реальном масштабе времени.
 - 3.4.5. Протяженность технологической шины до 1 км.
 - 3.4.6. Пропускная способность технологической шины до 1 Мбайт/с.
 - 3.4.7. Условия эксплуатации аналогичны условиям сети цеха.
- 3.4.8. Надежность сети должна быть максимально высокой, т. к. выход из строя любого компонента сети приводит к выходу из строя модуля в целом.

4. БАЗОВАЯ МОДЕЛЬ ЛВС АУИС

- 4.1. К автоматизированным учрежденческим информационным системам (АУИС) относятся оконечные системы 4-го уровня АСПИ, такие как САПР-К, САПР-Т, АСУ предприятия, АСНИ и др.
 - 4.2. ЛВС АУИС является интерсетью, в которой выделяют ЛВС трех уровней:

ЛВС системных и телематических служб;


ЛВС подразделений специальных служб;

ЛВС АРМ и терминалов.

Эти ЛВС должны соединяться ретрансляторами.

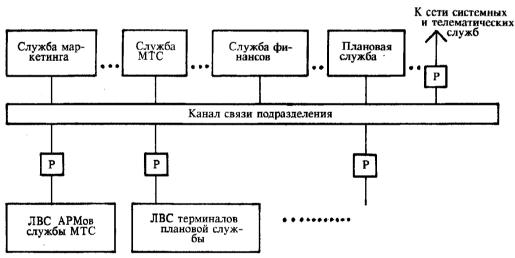

4.3. ЛВС верхнего уровня должна объединять системные службы, такие как Управление сетью, Архив, Телефакс и т. п., а также ЛВС подразделений и специальных служб (черт. 5).

Схема ЛВС уровня системных и телематических служб

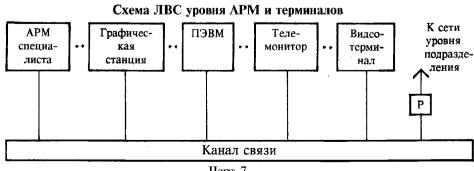

4.4. ЛВС подразделений и специальных служб должны объединять службы подразделений или специальные службы. Так например, для ЛВС АСУП объединяются такие службы, как служба маркетинга, служба материально-технического снабжения и т. п. (черт. 6). ЛВС специальных служб объединяет службу файлов, службу высококачественной печати и т. п.

Схема ЛВС уровня подразделений

Черт. 6

4.5. ЛВС АРМ и терминалов должна объединять ПЭВМ, мониторы, рабочие станции и разнообразные устройства в рамках подразделения или специальной службы (черт. 7) и предназначена для обеспечения коллективного доступа конечных пользователей к ресурсам вышележащих уровней.

Черт. 7

5. ТРЕБОВАНИЯ К ЛВС АУИС

- 5.1. Требования к ЛВС системных и телематических служб
- 5.1.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до 100 км.
 - 5.1.2. Должна быть обеспечена возможность подключения до 1000 оконечных систем.
- 5.1.3. Должна быть обеспечена возможность обмена информацией объемом несколько (до 10) Мбайт через промежутки времени в несколько минут.
 - 5.1.4. Время реакции не должно превышать 2 с.
- 5.1.5. Надежность сети должна обеспечиваться телесредствами обнаружения, локализации и изоляции отказов, а также телесредствами соответствующей реконфигурации сети для обхода отказов.
 - 5.2. Требования к ЛВС подразделений и специальных служб
- 5.2.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до 5 км.
 - 5.2.2. Сеть подразделений должна допускать подключение до 100 оконечных систем.
- 5.2.3. Сеть подразделений должна допускать обмен информацией объемом несколько (до 10) Мбайт через промежутки времени в несколько минут.
 - 5.2.4. Время реакции не должно превышать 2 с.
- 5.2.5. Надежность сети подразделений и специальных служб должна удовлетворять следующим требованиям:

выход из строя любой оконечной системы сети не должен влиять на работоспособность сети в целом;

ремонт, включение и исключение сетевых компонентов должны происходить без остановки сети в целом.

- 5.3. Требования к ЛВС АРМ и терминалов
- 5.3.1. Протяженность физического канала должна допускать соединение объектов, разнесенных на расстояния до $1\,\mathrm{km}$.
 - 5.3.2. Сеть АРМ должна допускать подключение до 50 абонентов.
- 5.3.3. Сеть APM должна допускать обмен информацией объемом до 100 кбайт через промежутки времени в несколько часов.
 - 5.3.4. Время реакции не должно превышать 2 с.
- 5.3.5. Надежность сети APM и терминалов должна быть не хуже, чем у устройств типа телефонные аппараты.

КОНЦЕПЦИЯ КОНСТРУКТИВНЫХ БЛОКОВ ЛВС МАР/ТОР

Проект MAP/TOP характеризуется определенным набором стандартных протоколов и интерфейсов, используемых на всех семи уровнях модели ВОС. Проект базируется на концепции, по которой реализации выбранных протоколов группируются в т. н. конструктивные блоки, выполняющие в рамках системы определенный набор функций.

Концепция конструктивных блоков позволяет разработчикам и изготовителям сетевого оборудования учитывать требования заказчиков за счет соотнесения этих требований со спецификациями протоколов и служб проекта MAP/TOP и выбора из них необходимых для реализации протоколов, их параметров, функциональных элементов и факультативных средств, обеспечивающих как соответствие конечного сетевого продукта спецификациям проекта MAP/TOP, так и возможность работы с сетевым оборудованием других изготовителей. С точки зрения заказчика сетевого оборудования концепция конструктивных блоков позволяет точно определить набор функций сетевого оборудования, удовлетворяющий потребности заказчика.

Каждый конструктивный блок характеризуется:

- функцией (что делает блок в системе для пользователя);
- спецификацией ссылок (набор выбранных параметров и характеристик, основанных на международных стандартах);
- правилом привязки (технические особенности, определяющие связи блока с другими блоками для формирования совместимой МАР/ТОР-системы).

Набор конструктивных блоков для оконечных MAP/TOP- систем показан на черт. 8. Эти блоки наложены на модель ВОС и элементы спецификации MAP/TOP. Полная оконечная система включает один или более блоков, перекрывающих уровни 1, 2, 3 и 4 и, по крайней мере, один блок, перекрывающий уровни 5, 6 и 7 (нумерация дается в соответствии с черт. 8).

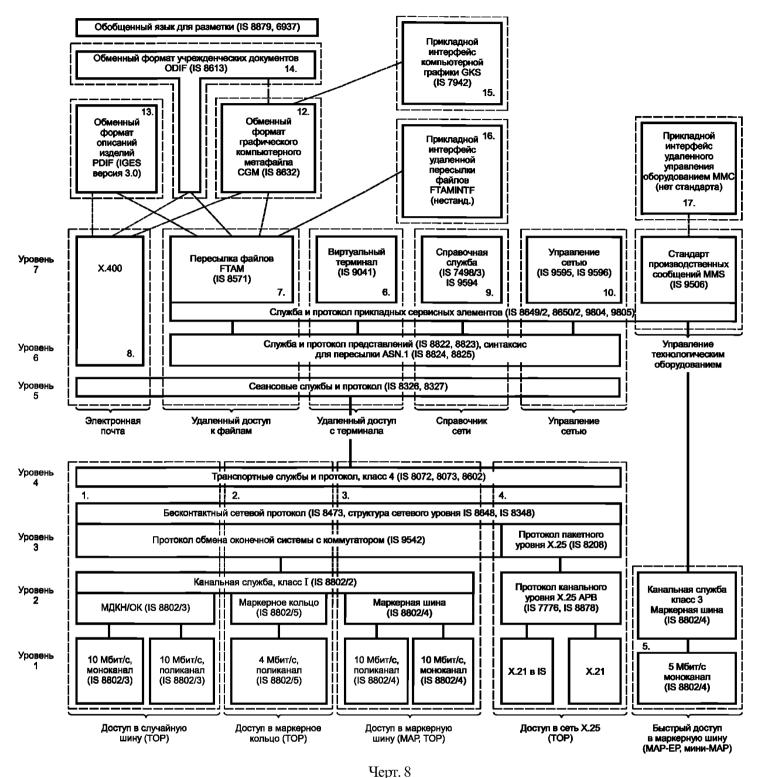
1. Конструктивный блок доступа в подсеть случайного доступа

Функция. Обеспечивает надежную передачу данных в любую удаленную оконечную систему через шину случайного доступа с контролем несущей и обнаружением столкновений (CSMA/CD).

```
Правила привязки. Должен быть связан, по крайней мере, с одним из следующих блоков: удаленный доступ к терминалу (блок 6); удаленный доступ к файлу (блок 7); электронная почта (блок 8); сетевая справочная служба (блок 9); сетевое управление (блок 10).
```

2. Конструктивный блок доступа в подсеть-маркерное кольцо

Функция. Этот блок предназначен для соединения оконечных систем с подсетью 802.5-маркерное кольцо. Он обеспечивает надежную передачу данных в любую удаленную оконечную систему.


Спецификация ссылок (блок 1). Правила привязки (блок 1).

3. Конструктивный блок. Доступ в подсеть-маркерная шина

Функция. Этот блок предназначен для соединения оконечных систем с подсетью MAP 802.4-маркерная шина. Он обеспечивает надежную передачу данных в любую удаленную оконечную систему.

Спецификация ссылок (блок 1).

Правила привязки (блок 1).

Структура локальной вычислительной сети МАР/ТОР и используемых в ней стандартов ИСО

4. Конструктивный блок. Доступ в подсеть X.25

Функция. Этот блок предназначен для соединения оконечных систем с подсетью Х.25-коммутации пакетов. Он обеспечивает надежную передачу данных в любую удаленную оконечную систему (используется сетевая служба в режиме без установления соединения).

Спецификация ссылок (блок 1).

Правила привязки (блок 1).

5. Конструктивный блок быстрого доступа в маркерную шину

Функция. Этот блок позволяет подключать оконечную систему МАР/ЕРА или мини-МАР к моноканальной маркерной шине. Обеспечивает надежную передачу данных в реальном масштабе времени между удаленными оконечными системами МАР/ЕРА и мини-МАР.

C. 9 P 50-34.119-90

Спецификация ссылок (блок 1).

Правила привязки. Должен быть связан с блоком управления технологическим оборудованием (блок 11).

6. Конструктивный блок удаленного доступа к терминалу

Функция. Этот блок обеспечивает терминальным пользователем соединение и доступ к гетерогенным хост- системам независимо от используемого терминала. В настоящее время поддерживается только базовый класс виртуального терминала. Этот блок специфицирует протокол, который обеспечивает взаимосвязь оконечной системы, поддерживающей терминальные функции сервер/эмулятор с оконечной системой, поддерживающей хост-системные интерактивные приложения.

Правила привязки. Должен быть связан, по крайней мере, с одним из следующих блоков доступа в подсеть:

CSMA/CD (блок 1). Маркерное кольцо (блок 2). X.25 (блок 3). MAP-маркерная шина (блок 4).

7. Конструктивный блок удаленного доступа к файлам

Функция. Этот блок представляет оконечным системам функции, необходимые прикладным процессам, чтобы осуществлять удаленный доступ к файлам (т. е. считывать или записывать либо весь файл, либо его часть) и удаленное управление файлами (т. е. удалять или манипулировать атрибутами).

Правила привязки. Должен быть связан, как блок 6.

Может быть связан с любым из следующих конструктивных блоков:

CGM IF (блок 12).

PDIF (блок 13).

ODIF (блок 14).

Прикладной интерфейс удаленной передачи файлов (блок 16).

8. Конструктивный блок. Электронная почта

Функция. Этот блок обеспечивает оконечным системам возможность для хранения и направленной обработки сообщений между конечными пользователями (и прикладными процессами). Он представляет пользователю электронной почты функции, необходимые для отсылки и получения межперсональных сообщений. Содержание сообщения может быть составлено из ASC11-текстов или любых обменных форматов.

Спецификация ссылок-X.400, X.401, X.408, X.409, X.410, X.411, X.420. X.430

Правила привязки. Должен быть связан, — как блок 5.

Может быть связан с:

CGMIF (блок 12);

PDIF (блок 13);

ODIF (блок 14).

9. Конструктивный блок. Сетевая справочная служба

Функция. Этот блок обеспечивает оконечным системам возможность доступа к сервису удаленной сетевой директории и/или поддержки функций сервера сетевой директории. Это позволяет пользователям оконечной системы обращаться к различным прикладным объектам, доступным через сеть, по их именам и использовать сервер сетевой директории для возвращения из информационной базы директории текущего прикладного адреса.

Правила привязки (блок 6).

10. Конструктивный блок. Сетевое управление

Функция. Этот блок обеспечивает оконечные системы удаленным управлением. Он включает основные средства, необходимые для выполнения управления конфигурацией, сбоями и исполнением.

Правила привязки (блок 6).

11. Конструктивный блок управления технологическим оборудованием

Функция. Этот блок реализует протокол службы производственных сообщений (MMS), позволяющий в реальном масштабе времени, как минимум, загружать и выгружать программы управления технологическим оборудованием (роботами, станками с ЧПУ и т. д.), записывать и считывать данные из устройств управления технологическим оборудованием, извещать о его состоянии, осуществлять удаленную диагностику технологического оборудования.

Правила привязки. Должен быть связан, по крайней мере, с блоком быстрого доступа в маркерную шину (блок 5).

12. Конструктивный блок. Формат взаимообмена — графический компьютерный метафайл (CGMIF)

Функция. Этот блок обеспечивает формат и кодирование общего графического метафайла. Этот метафайл может быть передан в любую другую оконечную систему, где графическое изображение может быть восстановлено с помощью программного обеспечения и технических средств той системы.

Правила привязки. Должен быть связан, по крайней мере, с одним из следующих блоков:

удаленный доступ к файлам (блок 7);

электронная почта (блок 8).

Может быть связан с блоком:

прикладной интерфейс машинной графики (блок 15);

ODIF (блок 14).

13. Конструктивный блок. Формат взаимообмена — описание изделия (PDIF)

Функция. Данные описания изделия являются подмножеством данных изделий. PDIF включает те элементы данных, которые необходимы для анализа, проектирования, производства и испытания изделия. Этот блок обеспечивает общий формат и кодирование для передачи данных описания изделия среди прикладных процессов.

Спецификация ссылок — IGES = 3.0, STEP.

Правила привязки. Должен быть связан (блок 12).

14. Конструктивный блок. Формат взаимообмена учрежденческими документами (ОDIF)

Функция. Этот блок представляет общий формат и кодирование для передачи сложных учрежденческих документов в исправляемом или окончательном виде, содержащем символы, геометрическую и растровую графику.

Правила привязки. Должен быть связан (блок 12).

15. Конструктивный блок — прикладной интерфейс машинной графики

Функция. Этот блок представляет прикладному пользователю стандартный интерфейс к GKS.

Спецификация ссылок — по ГОСТ 27817.

Правила привязки. Должен быть связан с CGMIF (блок 12).

16. Конструктивный блок. Прикладной интерфейс к удаленной передаче файлов

Функция. Этот блок представляет прикладному пользователю стандартный интерфейс к функциям, предоставляемым удаленной передачей файлов.

Спецификация ссылок — нет.

Правила привязки. Должен быть связан с блоком удаленного доступа к файлам (блок 7).

17. Конструктивный блок. Прикладной интерфейс удаленного управления оборудованием

Функция. Этот блок предоставляет стандартный интерфейс между прикладной программой управления технологическим оборудованием и механизмом управления технологическим оборудованием (блок 12).

Спецификация ссылок — нет.

Правила привязки. Должен быть связан с блоком управления технологическим оборудованием (блок 12).

Примеры построения оконечных систем на конструктивных блоках проекта MAP/TOP приведены в табл. 1.

Таблица 1

	Тип оконечной системы						
Номер конструктив- ного блока	Файловая служба в АУИС	Файловая служба в АУИС, сопряженная с сетью X. 25	Справочно- управляющая служба	АСУ ГПМ	АРМ начальника цеха	АРМ конструктора	АСУ ГАЦ
1	+				+	+	
2			+				
3							+
4		+					
5				+			
6			+	+	+	+	+
7	+	+			+	+	+
8					+		+
9			+	+	+		+
10			+				+
11				+			
12						+	
13				+		+	+
14	+				+	+	+
15						+	
16	+	+		+		+	+
17				+			

ПРИЛОЖЕНИЕ 2 Справочное

СОСТАВ АУИС

Примерный состав служб АУИС приведен в табл. 2. Все перечисленные в ней службы должны быть, как правило, реализованы на отдельных ЭВМ (серверах соответствующих служб).

Таблица 2

Классификация служб АУИС

Тип службы	Вид службы	Класс службы
Системная	Управление сетью Справочная Аутентификации Единого времени Жизнеобеспечения деятельности Архивная	Реального времени Диалоговая Диалоговая Реального времени Реального времени Потоковая/диалоговая
Интерфейсная	Видеотекс Телекс Телетекс Телетекс Телефакс Телеавтограф Электронная почта Телефото Передача данных, речи, изображений по крупномасштабным сетям	Диалоговая Потоковая Потоковая Потоковая Потоковая Потоковая Потоковая/диалоговая Потоковая Потоковая
Специальная	Высококачественная печать Обработка данных Почтовая служба Репрографии Новостей Файловая Ввода текстов и/или изображение с листа	Потоковая Потоковая/диалоговая Потоковая/диалоговая Потоковая Потоковая Потоковая/диалоговая Потоковая/диалоговая Потоковая/диалоговая

Служба управления должна управлять функционированием сети, обнаруживать, локализовывать и устранять неисправности, реконфигурировать ЛВС.

Справочная служба представляет собой базу данных, в которой должны храниться все данные, необходимые для поддержания деятельности самого учреждения, включая данные о сотрудниках и их сетевых адресах, службах сети и их сетевых адресах и т. д.

Служба аутентификации должна обеспечивать защиту от несанкционированного доступа в сеть, к ее услугам и данным пользователей.

Служба единого времени должна обеспечивать единство времени во всех узлах сети, необходимое для реконфигурации сети и различных служб сети

Служба интегрированной системы жизнеобеспечения деятельности учреждения должна централизованно управлять средствами обеспечения нормальных условий труда персонала — сигнализацией, освещением, вентиляцией и др.

Служба ведения архива должна обеспечивать хранение и доступ к архивным данным, а также их корректировку и изменение.

Телематические службы должны обеспечивать стандартное сопряжение с внешними общедоступными сетями.

Служба высококачественной печати должна обеспечивать подготовку и изготовление документов на специальных устройствах печати, включая многоцветную печать, лазерный вывод и т. п.

Служба обработки данных должна обеспечивать обработку данных, требующую использования высоко-производительных порядка 1-10 млн. оп./с 9BM и больших (десятки Гбайт) объемов памяти.

Почтовая служба должна обеспечивать хранение и обмен электронными документами.

Служба репрографии должна обеспечивать вывод документов на микрофильмы и микрофиши.

Служба новостей должна обеспечить распространение в учреждении различных аудио-, видео- и прочих сообщений и объявлений.

Файловая служба должна обеспечивать хранение и доступ к оперативным данным.

Служба ввода с листа должна обеспечить ввод типографских текстов и изображений средствами специальных автоматизированных устройств (например оптических сканеров).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАНЫ И ВНЕСЕНЫ Государственным комитетом СССР по управлению качеством продукции и стандартам
- 2. УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.12.90 № 3508
- 3. ВВЕДЕНЫ ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения		
ГОСТ 27817—88	Приложение 1, п. 15		

5. ПЕРЕИЗДАНИЕ. Июль 2009 г.