4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств этофумезата в воде, почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1466—03

Издание официальное

Минздрав России Москва • 2004

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств этофумезата в воде, почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1466—03

ББК 51.23+51.21

O60

Обо Определение остаточных количеств этофумезата в воде, почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004.—12 с.

ISBN 5-7508-0522-0

- 1. Методические указания подготовлены: Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (чл.-корр. РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); Московской сельскохозяйственной академией им. К. А. Тимирязева (проф. В. А. Калинин, к. хим. н. А. В. Довгилевич); при участии Департамента госсанэпиднадзора Минздрава России (А. П. Веселов).
- Методические указания рекомендованы к утверждению Комиссией по госсанэпиднормированию при Минздраве России.
- 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко 24 июня 2003 г.
 - Введены с 30 июня 2003 г.
 - 5. Введены впервые.

ББК 51.23+51.21

Редакторы Глазкова М. Ф., Максакова Е. И. Технический редактор Ломанова Е. В.

Подписано в печать 12.05.04

Формат 60х88/16

Тираж 3000 экз.

Печ. л. 0,75 Заказ 42

Министерство здравоохранения Российской Федерации 101431. Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати и тиражирован Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11. Отделение реализации, тел. 198-61-01

- © Минздрав России, 2004
- © Федеральный центр госсанэпиднадзора Минздрава России, 2004

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

24 июня 2003 г.

Лата введения: 30 июня 2003 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств этофумезата в воде, почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1466—03

1. Вводная часть

Фирма-производитель: Байер КропСайенс (Германия).

Торговое название: Нортрон, НЦ 8438, Кемирон, Трамат.

Действующее вещество: этофумезат.

(+)-2-этокси-2,3-дигидро-3,3-диметилбензофуран-5-ил метан-сульфонат (ИЮПАК).

(+)-2-этокси-2,3-дигидро-3,3-диметил-5-бензофуранил метан-сульфонат (С.А.).

Структурная формула:

Эмпирическая формула: $C_{13}H_{18}O_5S$.

Молекулярная масса: 286,3.

Бесцветное кристаллическое вещество без запаха.

Температура плавления: 70—72 °C.

Давление паров при 25 °C: 0,12--0,65 мПа.

Коэффициент распределения н-октанол/вода: $K_{ow} \log P = 2,7$.

Растворимость (г/л) при 25 °C: ацетон, дихлорметан, диметилсульфоксид, этилацетат — более 600, толуол — 300—600, метанол 120—150, этанол — 60—75, гексан — 4,7, вода — 0,05.

Стабильность к гидролизу: стабилен при pH 7 и 9, но разлагается сильными щелочами и кислотами (DT₅₀ = 30 дней (pH 1) и 10 дней (pH 13).

Разрушается при облучении водного раствора солнечным светом: DT $_{50} = 31$ час.

В почве сохраняется достаточно длительное время: DT₅₀ колеблется от 10 до 122 дней в лабораторных и от 84 до 407 дней в полевых условиях. Вещество умеренно сорбируется почвами, локализуется в верхнем 30 см слое почвы и не вымывается в грунтовые воды.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD₅₀) для крыс — более 5 000 мг/кг; острая дермальная токсичность (LD₅₀) для крыс — более 2 000 мг/кг; острая ингаляционная токсичность (LC₅₀) для крыс — более 3,97 мг/дм³ воздуха. Этофумезат не оказывает раздражающего действия на слизистые оболочки глаз и кожу кроликов. LC₅₀ для рыб — 12—20 мг/л (96 час.).

Препарат малотоксичен для рыб, пчел, птиц и диких животных.

Гигиенические нормативы: ОДК в почве -0.2 мг/кг; ПДК в воде водоемов -0.005 мг/дм³; МДУ в свекле столовой, кормовой и сахарной -0.1 мг/кг; ВМДУ в табаке -1 мг/кг.

Область применения препарата

Этофумезат — системный гербицид, поглощается корнями и в меньшей степени листьями растений. Применяется для борьбы с однолетними злаковыми и широколистными сорными растениями в посевах сахарной, столовой и кормовой свеклы при норме расхода 0,5—2,0 кг/га путем довсходового внесения или опрыскивания вегетирующих растений. Часто применяется в смеси с препаратами контактного или остаточного лействия.

2. Методика определения остаточных количеств этофумезата в воде, почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом высокоэффективной жидкостной хроматографии

2.1. Основные положения

2.1.1. Принцип метода

Метод основан на определении этофумезата с помощью обращенно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым детектором после извлечения вещества из воды гексаном, из почвы и растительного материала водным ацетоном при ультразвуковой обработке, очистки экстрактов перераспределением в системе несмешивающихся растворителей, а также на колонке с основным оксидом алюминия.

Количественное определение проводится методом абсолютной калибровки.

2.1.2. Избирательность метода

В предлагаемых условиях метод специфичен в присутствии пестицидов, применяемых в интенсивной технологии выращивания сахарной, столовой и кормовой свеклы.

2.1.3. Метрологическая характеристика метода

Таблица

Метрологическая характеристика метода

	Метрологические параметры, $P = 0.95$, $n = 20$						
Анализируемый объект	предел обнару- жения, мг/дм ³ мг/кг	диапазон определяемых концентра- ций, мг/дм ³ мг/кг	среднее значение опреде- ления, %	стан- дартное откло- нение, S, %	относи- тельное откло- нение, %	довери- тельный интервал среднего, %	
Вода	0,0025	0,00250,025	91,0	2,1	0,9	± 1,9	
Почва	0,10	0,1—1,0	88,0	3,4	1,5	± 3,2	
Сахарная свек- ла (ботва)	0,10	0,1—1,0	88,9	4,4	2,0	± 4,1	
Сахарная свек- ла (корнеплоды)	0,05	0,050,5	87,3	3,4	1,5	± 3,2	
Столовая свекла (корнеплоды)	0,05	0,050,5	86,5	3,0	1,3	± 2,8	
Кормовая свек- ла (корнеплоды)	0,05	0,050,5	83,5	2,8	1,3	± 2,6	

2.2. Реактивы, растворы и материалы

Этофумезат с содержанием д.в. 99,9 % (АгрЭво,						
Германия)						
Ацетон, чда	ГОСТ 2603—79					
Ацетонитрил	ТУ 6-09-3534—82					
Вода дистиллированная или деионизованная	ΓΟCT 7602—72					
н-Гексан, хч	ТУ 6-09-3375—78					
Железо (II) серно-кислое, хч	ΓΟCT 4148—78					
Калия перманганат	ГОСТ 20490—75					
Калий углекислый, хч	ГОСТ 4221—76					
Кальция хлорид, хч	ГОСТ 4161—77					
Кислота серная, хч	ΓΟCT 420477					
Метилен хлористый	ГОСТ 12794—80					
Натрия сульфат безводный, хч	ΓΟCT 4166—76					
Натрия гидроксид, хч	ГОСТ 4328—77					
Фосфора пентоксид, ч	MPTY 6-09-575969					
Эфир диэтиловый	ГОСТ 6255—74					
Элюент для колоночной хроматографии: смесь						
хлористый метилен-диэтиловый эфир (70:30,						
по объему)						
Подвижная фаза для ВЭЖХ: смесь ацетонитрил-						
вода (70:30, по объему)						
Алюминия оксид для хроматографии, І степени						
активности по Брокману, основной	МРТУ 6-09-391683					
Стекловата						
Фильтры бумажные «синяя лента»	ТУ 6-09-1678—77					

2.3 Приборы, аппаратура, посуда

Жидкостный хроматограф с ультрафиолетовым детектором фирмы Altex (США) или аналогичный Самописец регистрирующий фирмы Кірр а. Zonen BD 41 или аналогичный Колонка хроматографическая, длиной 15 см и внутренним диаметром 4 мм, заполненная Кготазіі 100А - С18, зернением 5 мкм (АО Био-ХимМак; Москва, Воробьевы горы, МГУ) Шприц для ввода образцов в жидкостной хроматограф, емкостью 100 мкл Весы аналитические типа ВЛР-200 ГОСТ 19401—74 Водоструйный насос

Гомогенизатор	мрту 42-1505—63
Прибор для перегонки при атмосферном давлении	
Ротационный испаритель, тип ИР-1М	ТУ 25-11-917—76
Сито с диаметром отверстий 1 мм	
Сушильный шкаф	
Баня ультразвуковая, модель D-50, Branson	
Instr.Co., США или аналогичная	
Воронка Бюхнера	ГОСТ 0147—73
Воронки для фильтрования стеклянные	ΓΟCT 8613—75
Воронки делительные, вместимостью 100 и 250 мл	ГОСТ 25336—82
Колба Бунзена	ГОСТ 5614—75
Колбы конические с притертыми пробками,	
вместимостью 250 мл	ГОСТ 25336—82
Колбы мерные, вместимостью 50 и 100 мл	ГОСТ 1770—74
Колбы грушевидные, вместимостью 50, 100 мл	ГОСТ 25336—82
Цилиндры мерные, вместимостью 50, 100 и 250 мл	ГОСТ 1770—74
Пробирки градуированные с притертыми	
пробками, вместимостью 5 и 10 мл	ΓΟCT 1051575
Пипетки мерные, вместимостью 1, 2 и 5 мл	ГОСТ 20292—74E
Хроматографическая колонка стеклянная	
$25 \times 1.8 \text{ cm}$	

2.4. Отбор проб

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051—79 от 21.08.79).

Отобранные пробы почвы, ботвы и корнеплодов свеклы хранят в стеклянной или полиэтиленовой таре в холодильнике не более суток. Для длительного хранения пробы почвы доводят до воздушно-сухого состояния и хранят в холодильнике при температуре не выше 4 °С в течение 3 месяцев; образцы ботвы и корнеплодов свеклы хранят до анализа в морозильной камере при температуре –18 °С. Пробы воды хранят при температуре не выше 4 °С в течение 2 дней, при температуре –18 °С в течение месяца.

Перед анализом сухую почву просеивают через сито с отверстиями диаметром 1 мм, а ботву и корнеплоды измельчают.

2.5. Подготовка к определению

2.5.1. Подготовка и очистка реактивов и растворителей

Органические растворители перед началом работы очищают, сушат и перегоняют в соответствии с типовыми методиками. Гексан и хлористый метилен встряхивают с небольшими порциями концентрированной серной кислоты до тех пор, пока свежая порция кислоты не перестанет окрашиваться. Затем растворители последовательно промывают водой, 2 %-ным раствором гидроксида натрия и снова водой, после чего сушат над гидроксидом натрия и перегоняют.

Ацетон перегоняют над перманганатом калия и поташом (на 1 л ацетона 10 г KMnO_4 и $2 \text{ г K}_2\text{CO}_3$).

Ацетонитрил сушат над пентоксидом фосфора и перегоняют; отогнанный растворитель повторно перегоняют над углекислым калием.

Диэтиловый эфир (1 л) предварительно встряхивают с 20 мл свежеприготовленного раствора железного купороса (30 г сульфата железа в 55 мл воды с добавлением 1,5 г концентрированной серной кислоты) Затем диэтиловый эфир последовательно промывают 0,5 %-ным раствором перманганата калия, 5 %-ным раствором гидроксида натрия и водой, после чего сущат над хлористым кальцием и перегоняют.

2.5.2. Подготовка подвижной фазы для ВЭЖХ

Отмеряют 700 мл ацетонитрила, переносят в мерную колбу емкостью 1 000 мл, добавляют 300 мл бидистиллированной воды, перемешивают, фильтруют и дегазируют.

2.5.3. Кондиционирование колонки

Промыть колонку для ВЭЖХ смесью ацетонитрил—вода (70:30, по объему) в течение 30 мин при скорости подачи растворителя 1 мл/мин. Включить детектор и подождать стабилизации базовой линии (5—15 мин).

2.5.4. Приготовление стандартных растворов

Основной стандартный раствор этофумезата с содержанием 100 мкг/мл готовят растворением 0,010 г вещества, содержащего 99,9 % д.в., в ацетонитриле в мерной колбе на 100 мл. Раствор хранят в холодильнике не более месяца.

Рабочие стандартные растворы с концентрациями 0,1; 0,2; 0,5 и 1,0 мкг/мл готовят из основного стандартного раствора этофумезата соответствующим последовательным разведением подвижной фазой для ВЭЖХ (п. 2.5.2). Рабочие растворы хранят в холодильнике при температуре не выше 4 °C не более 7 дней.

При изучении полноты открывания этофумезата в модельных матрицах используются ацетонитрильные растворы вещества.

2.5.5. Построение калибровочного графика

Для построения калибровочного графика в инжектор хроматографа вводят по 50 мкл рабочего стандартного раствора этофумезата с концентрацией 0,1; 0,2; 0,5 и 1,0 мкг/мл. Осуществляют не менее 5 параллельных измерений и находят среднее значение высоты хроматографического пика для каждой концентрации. Строят калибровочный график зависимости высоты хроматографического пика в мм от концентрации этофумезата в растворе в мкг/мл.

2.5.6. Подготовка колонки с оксидом алюминия для очистки экстракта

В нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 1,8 см вставляют тампон из стекловаты, закрывают кран и приливают около 10 мл гексана. Затем в колонку вносят суспензию 10 г основного оксида алюминия I степени активности по Брокману в 20 мл гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку промывают 20 мл гексана со скоростью 1—2 капли в секунду, после чего она готова к работе.

2.5.7. Проверка хроматографического поведения этофумезата на колонке с оксидом алюминия

В круглодонную колбу емкостью 10 мл отбирают 0,1 мл стандартного раствора этофумезата с концентрацией 10 мкг/мл. Отдувают растворитель током теплого воздуха, остаток растворяют в 3 мл смеси гексан—хлористый метилен (1:1, по объему) и наносят на хроматографическую колонку (п. 2.5.6). Промывают колонку 40 мл хлористого метилена и затем 30 мл смеси хлористый метилен—диэтиловый эфир (70:30, по объему) со скоростью 1—2 капли в секунду. Отбирают фракции по 10 мл каждая, упаривают, остаток растворяют в 1 мл подвижной фазы для ВЭЖХ (п. 2.5.2) и анализируют на содержание этофумезата по п. 2.7.

Фракции, содержащие этофумезат, объединяют, упаривают досуха, остаток растворяют в 2,5 мл подвижной фазы для ВЭЖХ и вновь анализируют по п. 2.7. Рассчитывают содержание этофумезата в элюате, определяют полноту вымывания вещества из колонки и необходимый для очистки экстракта объем элюента.

Примечание: Профиль вымывания этофумезата может меняться при использовании новой партии сорбента и растворителей.

2.6. Описание определения

2.6.1. Экстракция этофумезата

- 2.6.1.1. Вода. 100 мл предварительно отфильтрованной воды помещают в делительную воронку емкостью 250 мл и трижды экстрагируют гексаном порциями по 30 мл при энергичном встряхивании в течение 1 мин. Объединенную органическую фазу пропускают через слой безводного сульфата натрия и упаривают досуха на роторном испарителе при температуре 30 °C. Сухой остаток растворяют в 2,5 мл подвижной фазы для ВЭЖХ (п. 2.5.2) и анализируют на содержание этофумезата по п. 2.7.
- 2.6.1.2. Почва. Навеску (25 г) воздушно-сухой почвы помещают в коническую колбу на 250 мл, приливают 100 мл смеси ацетон-вода (80:20, по объему) и помещают в ультразвуковую баню на 5 мин. Суспензию фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр. Остаток на фильтре промывают 50 мл смеси ацетон-вода (80:20, по объему). Из объединенного экстракта отбирают аликвоту раствора (около 12 мл), эквивалентную 2,5 г почвы. Дальнейшую очистку экстракта проводят по пп. 2.6.2 и 2.6.3.
- 2.6.1.3. Ботва и корнеплоды свеклы. К навеске (25 г) измельченного растительного материала приливают 100 мл смеси ацетон—вода (80:20 по объему) и гомогенизируют 5 мин при 10 000 об./мин. Суспензик фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу на 250 мл. Остаток на фильтре промывают 50 мл смеси ацетонвода (80:20, по объему). Из объединенного экстракта отбирают аликвоту раствора, эквивалентную соответственно 5 г корнеплодов или 2,5 г ботвы. Дальнейшую очистку экстракта проводят по пп. 2.6.2 и 2.6.3.

2.6.2. Очистка экстракта

Аликвоту почвенного (из п. 2.6.1.2) или растительного (и п. 2.6.1.3) экстракта упаривают до водной фазы на роторном испарителє при температуре 40 °C. Водный остаток переносят в делительную воронку емкостью 100 мл, приливают 25 мл бидистиллированной воды ν 30 мл гексана и воронку встряхивают в течение 1 мин. После разделения слоев отделяют гексановую фракцию, а водную фазу экстрагируют гексаном еще дважды (30 + 20 мл). Объединенный гексановый экстракт пропускают через стеклянный фильтр, заполненный безводным сульфа том натрия, и затем упаривают досуха на роторном испарителе при тем пературе 30 °C. Дальнейшую очистку экстракта проводят по п. 2.6.3.

2.6.3. Очистка на колонке с оксидом алюминия

Остаток в колбе, полученный при упаривании очищенных по п. 2.6.2 экстрактов растительного материала или почвы, количественно переносят тремя 1-мл порциями смеси гексан—хлористый метилен (1:1, по объему) в кондиционированную хроматографическую колонку (п. 2.5.6). Промывают колонку 40 мл хлористого метилена, которые отбрасывают. Этофумезат элюируют 30 мл смеси хлористый метилендиэтиловый эфир (70:30, по объему), собирая элюат в грушевидную колбу емкостью 50 мл. Раствор упаривают досуха на роторном испарителе при температуре 30 °C. Сухие остатки почвы, ботвы и корнеплодов свеклы растворяют в 2,5 мл подвижной фазы для ВЭЖХ (п. 2.5.2) и анализируют по п. 2.7.

2.7. Условия хроматографирования

Жидкостный хроматограф с ультрафиолетовым детектором Altex (США) или аналогичный

Колонка стальная длиной 15 см, внутренним диаметром 4 мм, содержащая Kromasil 100A - C18 зернением 5 мкм.

Температура колонки комнатная.

Подвижная фаза ацетонитрил-вода (70:30, по

объему).

Скорость потока элюента 0,6 мл/мин. Рабочая длина волны 280 нм.

Чувствительность 0,02 ед. абсорбции на шкалу.

Объем вводимой пробы 50 мкл. Скорость протяжки ленты самописца 15 см/ч. Время удерживания этофумезата около 6 мин. Линейный диапазон детектирования 5—50 нг.

Альтернативная неподвижная фаза: Диасорб 130-С10СN

Подвижная фаза ацетонитрил-вода (70: 30, по

объему).

Скорость потока элюента 0,7 мл/мин. Время удерживания этофумезата 4 мин.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 5.0 мкг/мл, разбавляют подвижной фазой для ВЭЖХ.

2.8. Обработка результатов анализа

Содержание этофумезата рассчитывают методом абсолютной калибровки по формуле:

$$X = \frac{H_1 \cdot A \cdot V}{H_0 \cdot m}$$
, где

X – содержание этофумезата в пробе, мг/кг или мг/дм³;

 H_1 – высота пика образца, мм;

 H_0 – высота пика стандарта, мм;

A – концентрация стандартного раствора, мкг/мл;

V — объем экстракта, подготовленного для хроматографирования, мл;

m — масса или объем анализируемой части образца, г или мл (для воды — 100 мл; для почвы и ботвы — 2.5 г; для корнеплодов — 5 г).

3. Требования техники безопасности

Необходимо соблюдать общепринятые правила безопасности при работе с органическими растворителями, токсичными веществами, электронагревательными приборами и сжатыми газами.

4. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с рекомендациями МИ 2335—95. ГСИ. Внутренний контроль качества результатов количественного химического анализа.

5. Разработчики

Макеев А. М., к. биол. н.; Дубовая Л. В.

ВНИИ фитопатологии, 143050 Московская обл., п/о Большие Вяземы, тел. 592-92-20.