Государственная система обеспечения единства измерений

СТАНДАРТНЫЕ ОБРАЗЦЫ СОСТАВА И СВОЙСТВ ВЕШЕСТВ И МАТЕРИАЛОВ

Методика оценивания характеристики стабильности

Издание официальное

Предисловие

1 РАЗРАБОТАНЫ Федеральным государственным унитарным предприятием «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ») Госстандарта России

ВНЕСЕНЫ Управлением метрологии Госстандарта России

- 2 ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ Постановлением Госстандарта России от 1 декабря 2003 г. № 339-ст
 - 3 ВВЕДЕНЫ ВПЕРВЫЕ

РЕКОМЕНДАЦИИ ПО МЕТРОЛОГИИ

Государственная система обеспечения единства измерений

СТАНДАРТНЫЕ ОБРАЗЦЫ СОСТАВА И СВОЙСТВ ВЕЩЕСТВ И МАТЕРИАЛОВ

Методика оценивания характеристики стабильности

Дата введения 2004-07-01

1 Область применения

Настоящие рекомендации распространяются на стандартные образцы (CO) состава и свойств веществ и материалов и устанавливают последовательность экспериментальных операций при исследовании стабильности CO, алгоритм обработки результатов для оценивания срока годности экземпляров CO, устанавливаемого в документации на тип CO.

Срок годности экземпляра СО назначается по результатам исследования стабильности при его первичной аттестации либо корректируется для утвержденного типа СО.

2 Нормативные ссылки

В настоящих рекомендациях использованы ссылки на следующие стандарты:

ГОСТ 8.315—97 Государственная система обеспечения единства измерений. Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ Р 8.563—96 Государственная система обеспечения единства измерений. Методики выполнения измерений

3 Термины, определения и сокращения

3.1 В настоящих рекомендациях применены термины по ГОСТ 8.315, ГОСТ Р 8.563, а также следующие термины с соответствующими определениями:

погрешность от нестабильности CO: Составляющая погрешности аттестованного значения CO, обусловленная изменением значений аттестованной характеристики CO в течение срока годности экземпляра CO.

 Π р и м е ч а н и е — Характеристика погрешности от нестабильности СО может быть выражена границами доверительного интервала для вероятности P или как функция от времени в виде формулы или графика;

стабильность СО: Свойство материала СО, выражающееся в неизменности значений аттестованной характеристики СО во времени при соблюдении условий хранения и применения:

исследование стабильности СО: Изучение материала СО для целей установления срока годности экземпляра СО, условий его хранения и применения, при которых оцениваются возможные изменения значений аттестованной характеристики СО под влиянием факторов нестабильности;

факторы нестабильности: Совокупность внешних условий и физических и химических процессов, протекающих в материале СО, вызывающих изменение аттестованной характеристики СО;

ускоренное старение: Хранение материала СО при исследовании стабильности СО в условиях, усиливающих в несколько раз воздействие факторов нестабильности;

скользящий размах: Абсолютное значение разности результатов измерений в последовательных парах, упорядоченных по времени проведения измерений.

3.2 В настоящих рекомендациях применены следующие сокращения:

СО — стандартный образец;

МВИ — методика выполнения измерений;

ТЗ — техническое залание.

4 Общие положения

- 4.1 Исследование стабильности СО проводят при первичной аттестации СО в соответствии с ТЗ на разработку СО или программой (методикой) аттестации СО.
- 4.2 Порядок исследования стабильности CO, требования к материалу CO, условия их хранения в процессе исследования, применяемые средства измерения или МВИ устанавливают в программе (методике) аттестации CO.
- 4.3 Исследование стабильности СО утвержденного типа при корректировке срока годности экземпляра СО проводят, как правило, по методике его первичной аттестации.
- 4.4 Для оценивания характеристики погрешности от нестабильности СО используют МВИ, аттестованные в соответствии с ГОСТ Р 8.563. Предпочтительнее использовать МВИ и средства измерений с известным значением стандартного отклонения случайной погрешности *S*.

Стандартное отклонение случайной погрешности МВИ Ѕ должно удовлетворять условию

$$S/\Delta_{mon} \le 2,$$
 (1)

- где $\Delta_{\text{доп}}$ допускаемое значение погрешности аттестованного значения СО, заданное в ТЗ на разработку СО.
- 4.5 Продолжительность времени исследования стабильности т должна быть более половины предполагаемого срока годности экземпляра СО.

Продолжительность времени исследования при ускоренном старении материала СО сокращается и определяется исходя из предполагаемого срока годности экземпляра СО и известной или оцененной зависимости изменений аттестуемой характеристики от факторов нестабильности.

5 Проведение экспериментальных исследований и обработка результатов

- 5.1 Для оценки характеристики погрешности от нестабильности за период исследования стабильности СО τ получают N результатов измерений аттестуемой характеристики X_n ($n=1,\,2,\,\ldots\,,\,N$) через равные промежутки времени τ/N в моменты времени $t_n=(n-1)\cdot \tau/N$.
 - 5.2 Число измерений N определяют по таблице 1 в зависимости от отношения $S/\Delta_{\mathtt{доп}}$.

Таблица 1 — Минимальное число измерений при исследовании стабильности СО

Значение <i>S</i> /Д _{лоп}	Минимальное число измерений N	Значение S/Д _{доп}	Минимальное число измерений <i>N</i>	
2	68	1,2	25	
1,8	55	1,0	18	
1,6	44	0,8	11	
1,4	34	0,5	4	

5.3 Погрешность от нестабильности в n-й момент времени d_n оценивается разностью

$$d_n = X_n - X_1, \tag{2}$$

где X_n — результат измерения аттестуемой характеристики СО в n-й момент времени;

 X_1 — первый результат, полученный в период исследования стабильности СО.

5.4 Проводят экспоненциальное сглаживание полученных значений d, по формуле

$$U_n = \alpha \cdot d_n + (1 - \alpha) \cdot U_{n-1}, \tag{3}$$

где U_n — сглаженное значение разности результатов измерений в момент времени n ($n=1,\,2,\,...\,$, N). Для начального значения U_1 принимают $d_1=0$;

 α — коэффициент, выбираемый в зависимости от отношения $S\!/\!\Delta_{\text{поп}}$ по таблице 2.

Таблица 2 — Значение коэффициента а для экспоненциального сглаживания

$S\!/\!\Delta_{\mathrm{non}}$	α
До 0,7	0,3
Св. 0,7 до 0,9 включ.	0,25
Св. 0,9 до 1,2 включ.	0,20
Св. 1,2 до 1,5 включ.	0,15
Св. 1,5	0,10

5.5 Результаты контроля стабильности записывают в форме таблицы 3.

Таблица 3 — Результаты контроля стабильности СО

Номер измерения <i>п</i>	Значение разности <i>d_n</i>	α d_n	$(1-\alpha)$ U_{n-1}	U _n	R_n
1	0	0	0	0	-
2	d ₂	$\alpha \cdot d_2$	0	U_2	R ₂
3	d ₃	$\alpha \cdot d_3$	$(1-\alpha) U_2$	<i>U</i> ₃	R ₃
•••					
•••		•••		•••	•••
N	d_N	$\alpha \cdot d_N$	$(1-\alpha) U_{N-1}$	U_N	R_N

5.6 По вычисленным значениям U_n для $n=2,\ 3,\ \dots,\ N$ определяют скользящие размахи R_n по формуле

$$R_n = U_n - U_{n-1} \tag{4}$$

и записывают полученные значения в последнюю графу таблицы 3.

Вычисляют средний размах R по формуле

$$\overline{R} = \frac{1}{N-1} \sum_{n=2}^{N} R_n \,. \tag{5}$$

5.7 Предполагают линейную модель зависимости сглаженных оценок погрешности от нестабильности U_n :

$$U_n = at_n + \varepsilon_n, \tag{6}$$

где a — коэффициент линейной зависимости погрешности от нестабильности;

 ε_n — значение случайной погрешности результатов измерений в момент времени $t_n = \tau/N \cdot (n-1)$.

5.8 Определяют коэффициент a в уравнении (6) по полученным значениям U_n методом наименьших квадратов по формуле

$$a = \frac{6 \cdot \sum_{n=1}^{N-1} n \cdot U_{(n+1)}}{\tau \cdot (N-1) \cdot (2N-3)}.$$
 (7)

5.9 Опредсляют стандартное отклонение S_a коэффициента a по формуле

$$S_a = \frac{S_U}{\tau} \cdot \sqrt{\frac{6N}{2N-3}},\tag{8}$$

где S_U — стандартное отклонение сглаженных оценок, вычисляемое по среднему размаху \overline{R} по формуле

$$S_U = 0.89 \overline{R} . ag{9}$$

6 Определение срока годности экземпляра СО

6.1 Для обоснованного назначения срока годности экземпляра СО определяют допускаемое значение погрешности от нестабильности Δ_{T}

По заданному допускаемому значению погрешности аттестованного значения СО $\Delta_{\text{доп}}$ можно принять $\Delta_T = \frac{2}{3} \cdot \Delta_{\text{доп}}^*$.

- 6.2 Для обоснования зависимости погрешности от нестабильности от времени проверяют гипотезу о равенстве нулю коэффициента а в уравнении (6) следующим образом.
 - 6.2.1 Вычисляют статистику \hat{t} , равную

$$\hat{t} = \frac{|a|}{S_a},\tag{10}$$

где S_a — стандартное отклонение коэффициента a по формуле (8).

- 6.2.2 Сравнивают полученное значение \hat{t} с квантилью распределения Стьюдента со степенью свободы $(N-1)-t_{(N-1);\ 0.95}$. Значение $t_{(N-1);\ 0.95}$ находят по таблице приложения A.
- 6.2.3 Гипотезу о равенстве нулю коэффициента a в уравнении (6) принимают, если выполняется неравенство

$$\hat{t} \le t_{(N-1) \cdot 0.95} \,. \tag{11}$$

6.2.4 Гипотезу о равенстве нулю коэффициента а в уравнении (6) отвергают в случае невыполнения неравенства (11), то есть если выполняется неравенство

$$\hat{t} > t_{(N-1); 0.95}$$
 (12)

В этом случае существует зависимость погрешности от нестабильности от времени хранения материала СО.

6.3 В случае принятия гипотезы по 6.2.3 срок годности экземпляра СО *T* определяют из неравенства

$$t_{(N-1): 0.95} \cdot S_a \cdot T \le \Delta_T. \tag{13}$$

Из неравенства (13) срок годности экземпляра СО должен удовлетворять неравенству

$$T \le \frac{\Delta_T}{t_{(N-1); 0.95} \cdot S_a} \,. \tag{14}$$

- 6.4 В случае отклонения гипотезы по 6.2.4 возможны два варианта установления срока годности экземпляра СО в соответствии с 6.4.1 и 6.4.2. Варианты установления срока годности СО выбирает разработчик СО.
- 6.4.1 При аттестации СО устанавливают зависимость аттестованного значения СО \hat{A} от времени t в виде:

$$\hat{A} = A_0 + at \,, \tag{15}$$

^{*} Допускаемое значение погрешности от нестабильности Δ_T определяется в данном случае из условия, что длина интервала значений погрешности от нестабильности не превышает 1/3 длины интервала допускаемого значения погрешности аттестованного значения СО, равного 2 $\Delta_{\text{доп}}$.

где A_0 — аттестованное значение CO, установленное при аттестации CO;

а — коэффициент, установленный при исследовании стабильности СО, по формуле (7);

Срок годности экземпляра СО должен удовлетворять неравенствам:

$$A_1 \le A_0 + aT \le A_2$$
; (16)

$$t_{(N-1):\ 0.95} \cdot S_a \cdot T \le \Delta_T, \tag{17}$$

где A_1 , A_2 — границы диапазона допускаемых значений аттестованной характеристики СО для типа СО, указанные в документации на тип СО.

Срок годности экземпляра СО устанавливают равным наименьшему значению T, удовлетворяющему обоим неравенствам (16), (17).

6.4.2 Аттестованное значение СО в период срока годности экземпляра СО принимают равным его значению, полученному при аттестации. Устанавливают зависимость от времени погрешности от нестабильности СО в виде:

$$\Delta_t = \left| a + \frac{a}{|a|} \cdot S_a \cdot t_{(N-1); 0,95} \right| \cdot t. \tag{18}$$

Срок годности экземпляра СО определяют в этом случае из неравенства:

$$\left| a + \frac{a}{|a|} \cdot S_a \cdot t_{(N-1); 0.95} \right| \cdot T \le \Delta_T.$$
 (19)

6.4 Примеры исследования стабильности СО и определение срока годности экземпляра СО приведены в приложении Б.

ПРИЛОЖЕНИЕ А (обязательное)

Т а б л и ц а A1 — Квантили $t_{(N-1);\ 0,95}$ распределения Стьюдента

N — 1	<i>t</i> _{(N-1); 0,95}	N — I	t _(N-1) ; 0,95
3	2,35	12	1,78
4	2,13	13	1,77
5	2,02	14	1,76
6	1,94	15	1,75
7	1,90	16	1,75
8	1,86	17	1,74
9	1,83	18	1,73
10	1,81	19	1,73
11	1,80	20	1,72

Для $N \ge 21$ значения $t_{(N-1);\ 0,95}$ вычисляют по формуле

$$t_{(N-1);\ 0.95} = 1.64 + \frac{1.51}{N-1}.$$

ПРИЛОЖЕНИЕ Б (рекомендуемое)

Примеры исследования стабильности СО и определения срока годности экземпляра СО

Б.1 Экспериментальные результаты и их обработка

Проведено исследование стабильности СО состава комбикорма. Аттестуемая характеристика СО, для которой проведено исследование стабильности, — массовая доля сырого жира, так как в СО состава комбикормов наиболее нестабильным компонентом является сырой жир. Причина нестабильности — окисление жирных кислот при взаимодействии с атмосферой и разложение органических веществ в результате деятельности микроорганизмов.

Диапазон допускаемых значений аттестуемой характеристики от 7,0% до 9,0%.

Допускаемая погрешность аттестованного значения CO $\Delta_{\text{поп}} = 0.3\%$.

Предполагаемый срок годности экземпляра CO — 24 мес. Период исследования стабильности — 24 мес. Стандартное отклонение воспроизводимости результатов используемой МВИ S равно 0,3 %. Следовательно, отношение $S/\Delta_{\text{доп}} = 1,0$. Минимальное число измерений по таблице 1 настоящих рекомендаций равно 18. Исходя из этих данных промежуток времени между измерениями принят равным 1 мес.

В таблице Б.1 представлены разности текущих измерений d_n , промежуточные результаты для сглаживания, сглаженные значения U_n с коэффициентом сглаживания $\alpha = 0.2$ и текущие размахи R_n .

По данным, выбираемым из таблицы Б.1, вычисляем:

$$\sum_{n=1}^{N-1} n \cdot U_{n+1} = (1 \cdot 0.028 + 2 \cdot (-0.024) +, \dots, +23 \cdot (-0.217)) = -52.126$$

и средний размах

$$\overline{R} = \frac{1}{23} (0.028 + 0.052 + \dots + 0.039) = \frac{0.718}{23} = 0.031.$$

Вычисляем:

по формуле (7) коэффициент

$$a = \frac{6 \cdot (-52,126)}{24 \cdot 23 \cdot 45} = -0,0126,$$

по формуле (9)

$$S_{II} = 0.89 \cdot 0.031 = 0.028$$

и по формуле (8)

$$S_a = \frac{0.028}{24} \cdot \sqrt{\frac{6 \cdot 24}{45}} = 0.0021.$$

Вычисляем по формуле (10) статистику

$$\hat{t} = \frac{0.0126}{0.0021} = 6.0.$$

Находим в соответствии с приложением А:

$$t_{23;0,95} = 1,64 + \frac{1,51}{23} = 1,70.$$

Поскольку $\hat{t} > t_{23;\;0.95}$, то гипотеза о равенстве нулю коэффициента a отвергается.

P 50.2.031-2003

Таблица Б.1 — Результаты исследования стабильности

Номер результата п	d_n	α d_n	$(1-\alpha) U_{n-1}$	U_n	R_n
1	0	0	0	0	
2	0,14	0,028	0,000	0,028	0,028
3	-0,23	0,046	0,022	-0,024	0,052
4	0,09	0,018	-0,019	-0,001	0,023
5	-0,18	-0,036	-0,001	-0,037	0,036
6	-0,2	-0,04	0,029	-0,069	0,033
7	0,02	0,004	-0,055	-0,059	0,010
8	0,04	0,008	-0,048	0,040	0,020
9	-0,18	0,036	-0,032	-0,068	0,028
10	0,08	0,016	-0,054	0,038	0,030
11	-0,13	-0,026	0,031	-0,057	0,018
12	0	0	-0,045	-0,045	0,011
13	-0,07	0,014	0,036	-0,050	0,005
14	-0,26	0,052	-0,040	-0,092	0,042
15	-0,28	-0,056	-0,074	-0,130	0,038
16	-0,22	-0,044	-0,104	-0,148	0,018
17	-0,65	0,13	-0,118	-0,248	0,100
18	-0,59	-0,118	-0,199	-0,317	0,068
19	-0,41	0,082	-0,253	-0,335	0,019
20	-0,25	0,05	-0,268	-0,318	0,017
21	-0,06	-0,012	-0,255	0,267	0,052
22	-0,32	-0,064	-0,213	-0,277	0,011
23	-0,17	-0,034	-0,222	-0,256	0,021
24	-0,06	-0,012	-0,205	-0,217	0,039

Б.2 Определение срока годности экземпляра СО

Используем результаты по разделу Б.1 для определения срока годности экземпляра СО в соответствии с 6.4.1 настоящих рекомендаций.

Аттестованное значение CO A_0 равно 8,2 %. По формуле (15) зависимость аттестованного значения от времени представляется в виде:

$$\hat{A} = 8.2 - 0.0126 \cdot t$$
.

Из неравенства (17) получаем

$$T \le \frac{0.2}{1.70 \cdot 0.0021} \approx 56$$
 Mec.

Аттестованное значение СО за 56 мес получит значение

$$\hat{A} = 8.2 - 0.0126 \cdot 56 = 7.5 \%$$
.

Проверяем выполнение неравенства (16) для T = 56 (для данного примера $A_1 = 7,0$ и $A_2 = 9,0$. Подставляя эти значения в неравенство (16) получим

$$7.0 \le 7.5 \le 9.0$$
.

Следовательно, при значении T=56 выполняются для данного примера неравенства (16), (17) и срок годности экземпляра СО при таком способе задания аттестованного значения СО можно установить равным четырем годам.

Б.3 При определении срока годности экземпляра СО в соответствии с 6.4.2 настоящих рекомендаций зависимость погрещности от нестабильности от времени может быть представлена в виде:

$$\Delta_t = |-0.0126 - 0.0021 \cdot 1.7| \cdot t = 0.0147 \cdot t$$
.

При условии, что погрешность от нестабильности за срок годности экземпляра СО T не должна превышать $\Delta_T = 0.2$ получим для определения T неравенство

$$0.2 \le 0.0147 \cdot T$$
.

Срок годности экземпляра СО определяется из неравенства

$$T \le \frac{0.2}{0.0147} \approx 14$$
 Mec.

УДК 539.089.68:006.354

OKC 17.020

T86.5

Ключевые слова: стандартный образец, аттестованное значение СО, исследование стабильности СО, срок годности экземпляра СО

РЕКОМЕНДАЦИИ ПО МЕТРОЛОГИИ

Государственная система обеспечения единства измерений

СТАНДАРТНЫЕ ОБРАЗЦЫ СОСТАВА И СВОЙСТВ ВЕЩЕСТВ И МАТЕРИАЛОВ

Методика оценивания характеристики стабильности

БЗ 2-2003/2

Редактор Т.С. Шеко
Технический редактор Л.А. Гусева
Корректор В.И. Кануркина
Компьютерная верстка Е.Н. Мартемьяновой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 09.12.2003. Подписано в печать 23.12.2003. Формат 60х84 ¹/в. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 1,40. Уч.-изд. л. 0,80. Тираж 547 экз. 3ак. 1076. Изд. № 3140/4. С 13092.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ

Отпечатано в филиале ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102