Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.0.406—4.1.0.465—96 Выпуск 33

Издание официальное

Минздрав России Москва•2000

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.0.406—4.1.0.465—96 Выпуск 33

ИЗ7 Измерение концентраций вредных веществ в воздухе рабочей зоны: Сборник методических указаний. Вып. 33.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 2000.—255 с.

ISBN 5--7508--0203--5

- 1. Разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочно безопасным уровням воздействия (ОБУВ) санитарно-гигиеническим нормативам и являются обязательными при осуществлении санитарного контроля.
- 2. Утверждены и. о. председателя Госкомсанэпиднадзора России (заместителем Главного государственного санитарного врача Российской Федерации 8 июля 1996 г.)
- 3. Разработаны и подготовлены в соответствии с требованиями ГОСТа 12.1.005—88 ССБТ "Воздух рабочей зоны. Общие санитарно-гигиенические требования", ГОСТа 12.1.016—79 ССБТ "Воздух рабочей зоны. Требования к методикам контроля измерения концентраций вредных веществ", ГОСТ Р 1.5.—92 п. 7.3, ГОСТ 8.010—90 "Государственная система обеспечения единства измерений. Методики выполнения измерений".
- 4. Одобрены комиссией по государственному санитарно-эпидемиологическому нормированию госкомсанэпиднадзора России и Проблемной комиссией "Научные основы гигиены труда и профпатологии".
- 5. Предназначены для центров госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также заинтересованных министерств и ведомств.
 - 6. Введены впервые.

Ответственный исполнитель: Г. А. Дьякова.

Исполнители: Г. А. Дьякова, Л. Г. Макеева, Е. М. Малинина,

С. М. Попова, Е. Н. Грицун, Т. В. Рязанцева, Г. Ф. Громова.

ББК 51.21

ISBN 5--7508--0203--5

© Федеральный центр госсанэпиднадзора Минздрава России, 2000

Содержание

Измерение концентраций п-аминобензойной кислоты методом ВЭЖХ	
в воздухе рабочей зоны: МУК 4.1.0.40696	7
Спектрофотометрическое измерение концентраций 2-амино-4,6-	
диметил-1,3-пиримидина в воздухе рабочей зоны: МУК 4.1.0.40796	10
Газохроматографическое измерение концентраций 1-амино-3-	
пропанола в воздухе рабочей зоны: МУК 4.1.0.408—96	14
Измерение концентраций аскорбиновой кислоты методом высоко-	
эффективной жидкостной хроматографии в воздухе рабочей зоны:	
МУК 4.1.0.409—96	18
Спектрометрическое измерение концентраций аспаркама в воздухе	
рабочей зоны: МУК 4.1.0.410—96	22
- Газохроматографическое измерение концентраций 2-	
бензилбензоксазола в воздухе рабочей зоны: МУК 4.1.0.411—96	26
Газохроматографическое измерение концентраций 5-бром-5-нитро-1,3-	
диоксана (бронидокса) в воздухе рабочей зоны: МУК 4.1.0.412—96	30
Спектрофотометрическое измерение концентраций 2-бром-2-	
нитропропандиола-1,3 (бронитрола) в воздухе рабочей зоны:	
MYK 4.1.0.413—96	34
Измерение концентрации версамида стеариновой кислоты (ВСК)	
методом тонкослойной хроматографии в воздухе рабочей зоны:	
МУК 4.1.0.414—96	38
Измерение концентраций винной кислоты методом высокоэффекти-	
вной жидкостной хроматографии (ВЭЖХ) в воздухе рабочей зоны:	
МУК 4.1.0.415—96	42
Измерение концентраций витамина В методом высокоэффективной	
жидкостной хроматографии (ВЭЖХ) в воздухе рабочей зоны:	
МУК 4.1.0.416—96	45
Газохроматографическое измерение концентраций	
гексаметилдисилана в воздухе рабочей зоны: МУК 4.1.0.417—96	49
Измерение конщентраций 4-гидроксифенилуксус-ной кислоты методом	
высокоэффективной жидкостной хроматографии в воздухе рабочей	
зоны: МУК 4.1.0.418—96	53
Газохроматографическое измерение концентраций глицидного эфира в	
воздухе рабочей зоны: МУК 4.1.0.419—96	57
Фотометрическое измерение концентраций 1-(3(,4(-дигидроксифенил)-	
2-изопропиламиноэтанола гидрохлорида (изадрина) в воздухе рабочей	
зоны: МУК 4.1.0.420—96	61
Фотометрическое измерение концентраций 1-(3',4'-дигидроксифенил)-2-	
метиламиноэтанола (адреналина гидротартрата) в воздухе рабочей	
зоны: МУК 4.1.0.421—96	65
Газохроматографическое измерение концентраций диглицидилового	
эфира 1,4-бутандиола в воздухе рабочей зоны: МУК 4.1.0.422—96	69

МУК 4.1.0.406---4.1.0.465---96

Газохроматографическое измерение концентрации динитрила	
малоновой кислоты в воздухе рабочей зоны: МУК 4.1.0.423—96	73
Измерение концентраций N,N-динитрозопентаметилентетрамина	
методом высокоэффективной жидкостной хроматографии в воздухе	
рабочей зоны: МУК 4.1.0.424—96	77
Измерение концентраций диоксацина (5,8-дигидро-8—5-этил-1,3-	
диоксоло(4,5)хинолин-7-карбоновая кислота) методом высоко-	
эффективной жидкостной хроматографии в воздухе рабочей зоны: МУК 4.1.0.425—96	81
Спектрофотометрическое измерение концентраций (3,5-дитребутил-4-	
оксифенил)-пропионовой кислоты (фенозан-кислоты) в воздухе	
рабочей зоны: МУК 4.1.0.426—96	86
Газохроматографическое измерение концентраций дифенилсульфида в	
воздухе рабочей зоны: МУК 4.1.0.427—96	90
Спектрофотометрическое измерение концентраций	
дихлорацетамидометил-6-хлорбензойной кислоты ("хлоромета") в	
воздухе рабочей зоны: МУК 4.1.0.428—96	94
Газохроматографическое измерение концентраций	
дициклогексилового эфира янтарной кислоты в воздухе рабочей зоны:	
MVK 4.1.0.429—96	97
Измерение концентраций железа глиперофосфата методом атомно-	
абсорбционной спектрофотометрии в воздухе рабочей зоны:	
MYK 4.1.0.430—96	101
Фотометрическое измерение концентраций иодпирона в воздухе	
рабочей зоны: МУК 4.1.0.431—96	105
Измерение концентраций кальция глицерофосфата методом атомно-	
абсорбционной спектрофотометрии в воздухе рабочей зоны:	
	109
Газохроматографическое измерение концентраций карбамоил-3(5)-	
метилпиразола в воздухе рабочей зоны: МУК 4.1.0.433—96	113
Газохроматографическое измерение концентраций коричного	
альдегида (β-фенилакриловый альдегид) в воздухе рабочей зоны:	
MYK 4.1.0.434—96	117
Газохроматографическое измерение концентраций 0-	
метилбутиролактима в воздухе рабочей зоны: МУК 4.1.0.43596	121
Измерение концентраций метилового эфира 4-диметиламино-2-мето-	
ксибензойной кислоты (1), 5-нитро-4-диметиламино-2-метоксибен-	
зойной кислоты (II) и метилового эфира 5-нитро-4-диметиламино-2-	
метоксибензойной кислоты (III) методом высокоэффективной жидко-	
стной хроматографии в воздухе рабочей зоны: МУК 4.1.0.436—96	125
Газохроматографическое измерение концентраций метилового эфира	
хризантемовой кислоты в воздухе рабочей зоны: МУК 4.1.0.437-96	129

Спектрофотометрическое измерение концентраций (2-Метил-3-окси-4,5	
(оксиметил)-пиридина гидрохлорид, пиридоксина гидрохлорид	
(Витамин В6) в воздухе рабочей зоны: МУК 4.1.0.43896	133
Спектрофотометрическое измерение концентраций метилсульфата 1-	
метил-5-хлор-3-фенилантранила (метилсульфата антранила) в воздухе	
рабочей зоны: МУК 4.1.0.439—96	137
Спектрофотометрическое измерение концентраций 2-	
метоксикарбонилбензосульфамида в воздухе рабочей зоны:	
MYK 4.1.0.440—96	141
Полярографическое измерение концентраций метронидазола в	
воздухе рабочей зоны: МУК 4.1.0.441—96	145
Измерение концентраций метронидазола и 2-метил-4(5)-	
нитроимидазола методом высокоэффективной жидкостной	
хроматографии в воздухе рабочей зоны: МУК 4.1.0.442—96	149
Измерение концентраций модификатора РУ методом тонкослойной	
хроматографии в воздухе рабочей зоны: МУК 4.1.0.443—96	154
Спектрометрическое измерение концентраций натриевой соли	
поливинилтетразола (натрий ПВТ) в воздухе рабочей зоны:	
MYK 4.1.0.444—96	157
Измерение концентраций натрия лимоннокислого методом высоко-	
эффективной жидкостной хроматографии в воздухе рабочей зоны:	
MYK 4.1.0.445—96	161
Фотометрическое измерение концентраций нитрата натрия в воздухе	
рабочей зоны: МУК 4.1.0.446—96	165
Измерение концентраций 3-нитробензойной кислоты методом высоко-	
эффективной жидкостной хроматографии в воздухе рабочей зоны:	
MYK 4.1.0.447—96	169
Фотометрическое измерение концентрации 3-нитродифениламина в	
воздухе рабочей зоны: МУК 4.1.0.448—96	173
Измерение концентраций октадециламида- 4-бром-1-гидрокси-2-	
нафтойной кислоты (компоненты Н-500) и октадециламида-1-	
гидрокси-2-нафтойной кислоты (вещества 1-Г-3) методом высоко-	
эффективной жидкостной хроматографии в воздухе рабочей зоны:	
МУК 4.1.0.449—96	177
Фотометрическое измерение концентраций осмия в воздухе рабочей	
зоны: МУК 4.1.0.450—96	181
Спектрофотометрическое измерение концентрации пара-уретилан-	
бензолсульфамида в воздухе рабочей зоны: МУК 4.1.0.451—96	186
Газохроматографическое определение концентраций пирролидона-2 в	•
воздухе рабочей зоны: МУК 4.1.0.452—96	190
Газохроматографическое измерение концентраций пихтового масла в	
воздухе рабочей зоны: МУК 4.1.0.453—96	194

МУК 4.1.0.406—4.1.0.465—96

Измерение концентраций сахарина и п-гидроксибензойной кислоты	
методом высокоэффективной жидкостной хроматографии в воздухе	
рабочей зоны: МУК 4.1.0.454—96	199
Фотометрическое измерение концентраций сульфаниловой кислоты в	
воздухе рабочей зоны: МУК 4.1.0.455—96	203
Газохроматографическое измерение концентраций тиоуксусной	
кислоты в воздухе рабочей зоны: МУК 4.1.0.456—96	207
Газохроматографическое измерение концентраций тиофенола в	
воздухе рабочей зоны: МУК 4.1.0.457—96	210
Спектрофотометрическое измерение концентраций DL-α-	
трихлорацетиламино- β-окси-п-нитропропиофенона (ХАП) в воздухе	
рабочей зоны: МУК 4.1.0.458—96	214
Газохроматографическое измерение концентраций N-(2-фуроил)-	
пиперазина в воздухе рабочей зоны: МУК 4.1.0.459—96	218
Измерение концентраций хлорангидрида 5-нитро-4-диметиламино-2-	
метоксибензойной кислоты методом высокоэффективной жидкостной	
хроматографии в воздухе рабочей зоны: МУК 4.1.0.460—96	222
Спектрофотометрическое измерение концентраций 5-хлор-3-	
фенилантранила в воздухе рабочей зоны: МУК 4.1.0.461—96	226
Газохроматографическое измерение концентрации 1,2-эпоксиоктена-7	
в воздухе рабочей зоны: МУК 4.1.0.462—96	230
Спектрофотометрическое измерение концентраций этилового эфира	
ди-(4-оксикумаринил-3)-уксусной кислоты (неодикумарин) в воздухе	
рабочей зоны: МУК 4.1.0.463—96	236
Газохроматографическое определение концентраций эмбихина в	
воздухе рабочей зоны: МУК 4.1.0.464—96	24 0
Газохроматографическое измерение концентраций этилового эфира	
хлоругольной кислоты (этилхлорформиата) в воздухе рабочей зоны:	
MYK 4.1.0.465—96	245

УТВЕРЖДЕНО

Председатель Госкомсанэпиднадзора России Главный государственный санитарный врач Российской Федерации

Е. Н. Беляев

8 июня 1996 г. МУК 4.1.0.441—96

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Полярографическое измерение концентраций метронидазола в воздухе рабочей зоны

C6H9N3O3

М. м. 171

Метронидазол (I-β-оксиэтил)-2-метил-5-нитроимидазол) — белый или слегка зеленоватый кристаллический порошок. Мало растворим в воде, трудно в спирте.

В воздухе находится в виде аэрозоля.

ПДК в воздухе -1 мг/м³.

Характеристика метода

Определение основано на электровосстановлении методом дифференциальной импульсной полярографии электрохимически активного заместителя (нитрогруппы), связанного с гетероциклом.

Отбор проб проводят с концентрированием на фильтр.

Нижний предел измерения вещества в анализируемом растворе – 0,2 мкг/мл.

Нижний предел измерения вещества в воздухе – 0,5 мг/м³ (при отборе 10 п возлуха)

Диапазон измеряемых концентраций в воздухе – от 0,5 до 4,3 мг/м³.

Издание официальное

Настоящие методические указания не могут быть полностью или частично воспроизведены, тиражированы и распространены без разрешения Департамента госсанэпиднадзора Минздрава России.

Определению могут мешать соединения, способные к восстановлению в данных условиях.

Суммарная погрешность измерения не превышает ± 12 %. Время выполнения измерения, включая отбор проб. – 20—30 мин.

Приборы, аппаратура, посуда

Полярограф ПУ-1 (или РА-2) с измерительной ячейкой, снабженной ртутным капающим электродом с принудительным отрывом капли, вспомогательным электродом сравнения (насыщенный каломельный) Аспирационное устройство Фильтродержатели Колбы мерные, вместимостью 25, 100 мл Пипетки, вместимостью 1 и 10 мл Пробирки с пришлифованной пробкой, вместимостью 10 и 15 мл

ΓΟCT 1770—74 ΓΟCT 20292—74 ΓΟCT 25336—82

Реактивы, растворы, материалы

Метронидазол

Стандартный раствор № 1 с концентрацией 200 мкг/мл: 0,005 г препарата (точная навеска) переносят в мерную колбу, вместимостью 25 мл, доводят объем раствора диметилсульфоксидом до метки и перемешивают до полного растворения.

Стандартный раствор № 2 с концентрацией 40 мкг/мл: 5 мл стандартного раствора № 1 с концентрацией 200 мкг/мл вносят в мерную колбу, вместимостью 25 мл, и доводят объем раствора дистиллированной водой до метки.

Стандартные растворы хранят в холодильнике в течение 7 дней.

Отбор пробы воздуха

Воздух с объемным расходом 1 л/мин аспирируют через фильтр типа АФА-ВП, закрепленный в фильтродержателе.

Для измерения 1/2 ПДК достаточно отобрать 10 л воздуха.

Подготовка к измерению

В подготовленную измерительную ячейку, пропуская ток инертного газа, вносят пипеткой 10 мл фонового раствора, определенный объем стандартного раствора в соответствии с таблицей и в течение 10 мин пропускают инертный газ.

Регистрируют дифференциальную импульсную полярограмму в интервале потенциалов (минус 0,1 ÷ минус 0,5) В. Условия регистрации полярограмм:

 период капания (время задержки)
 1 с;

 амплитуда импульса
 50 мВ;

 скорость развертки
 5 мВ/с;

 чувствительность
 1 ×10;

 масштабы координат самописца
 X – 100 мВ/см,

 Y – 5 мВ/см.

В этих условиях потенциал пика E_n = минус (0.3 ± 0.02) В.

По окончании регистрации раствор сливают, ячейку промывают водой и повторяют цикл операций для следующей концентрационной точки. Концентрацию раствора в ячейке (C_m) вычисляют с учетом концентрации стандартного раствора (C_m) и разведения в ячейке (p):

$$C_{\text{84}} = C_{\text{ct}}/p$$

Высоту пика на полярограмме измеряют как расстояние (см) между точкой пересечения перпендикуляра, опущенного из точки максимума, с касательной к восходящей ветви пика.

Серию измерений для построения градуировочного графика повторяют 3—5 раз и находят средние значения высоты пика для каждой концентрационной точки. Строят градуировочный график, откладывая на оси абсцисс концентрацию раствора в ячейке (C_{su}) (мкг/мл), а по оси ординат — среднее значение высоты пика на полярограмме (мм).

Градуировочный график проверяют при замене реактивов, капилляра, но не реже 1 раза в месяц. Для построения градуировочного графика готовят шкалу градуировочных растворов согласно таблице.

Таблица

111		
шкала	градуировочных	pacibupub

№ п/п	Объем стандартного p-ра № 2, мл	Фоновый электролит, мл	Концентрация вещества в градуировочном р-ре, мкг/мл
1	0,05	10	0,199
2	0,10	10	0,396
3	0,20	10	0,784
4	0,30	10	1,160
5	0,35	10	1,350
6	0,45	10	1,720

Проведение измерения

Фильтр с отобранной пробой переносят в пробирку с пришлифованной пробкой, вместимостью 25 мл, приливают 25 мл диметилсульфоксида, встряхивают 2—3 мин и фильтруют.

В подготовленную ячейку вносят 10 мл фонового раствора, определенный объем (см. табл.) анализируемого раствора и пропускают инертный газ в течение 10 мин. Регистрируют полярограмму при условиях, аналогичных построению градуировочного графика. Измеряют высоту пика на полярограмме и определяют концентрацию метронидазола по градуировочному графику.

Расчет концентрации

Концентрацию препарата (C) в воздухе (мг/м³) вычисляют по формуле:

$$C = \frac{a \cdot \delta \cdot p}{V}$$
, где

a – концентрация метронидазола в растворе, найденная по градуировочному графику, мкг/мл;

6 – общий объем экстракта пробы с фильтра, мл;

р – коэффициент разведения пробы в полярографической ячейке;

V – объем воздуха, отобранного для анализа и приведенного к стандартным условиям, л (см. приложение 1).

Методические указания разработаны ГНИТИАФ, г. Санкт-Петербург.

Приложение 1

Приведение объема воздуха к стандартным условиям (температура 20 °С и давление 760 мм рт. ст.)

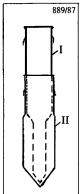
проводят по формуле

$$V_{20} = \frac{V + (273 + 20) \cdot P}{(273 + t) \cdot 101.33}$$
, где

 V_{i} – объем воздуха, отобранный для анализа, л;

P – барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);

t – температура воздуха в месте отбора пробы, °С.


Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_i на соответствующий коэффициент.

Приложение 2 Коэффициенты для приведения объема воздуха к стандартным условиям

Давление Р, кПа/мм рт. ст. 100.53/ 101.33 °C 97,33/ 97.86/ 98.4/ 98.93/ 99.46/ 100/ 101.06/ 1.101.86/ 750 730 734 738 742 746 754 758 760 764 1.1709 1.1772 1.1836 1.1899 1,2026 1.2058 -301,1582 1.1646 1.1963 1.2122 -26 1.1393 1,1456 1,1519 1,1581 1,1644 1,1705 1,1768 1,1831 1,1862 1,1925 -22 1,1212 1,1274 1.1336 1.1396 1.1458 1.1519 1.1581 1.1673 1.1643 1,1735 -181.1036 1.1097 1,1158 1,1218 1.1278 1.1338 1.1399 1.1460 1.1490 1.1551 -141.0866 1.0926 1.0986 1.1045 1.1105 1.1164 1.1224 1.1284 1.1313 1.1373 -101,0701 1.0760 1,0819 1,0877 1,0986 1,0994 1,1053 1,1112 1,1141 1,1200 1.0599 1,0714 1.0772 1.0829 1.0887 1.0945 1.0974 -6 1.0540 1.0657 1.1032 -2 1,0385 1,0442 1.0499 1,0556 1.0613 1.0669 1.0726 1,0784 1,0812 1,0869 0 1.0309 1.0366 1,0423 1,0477 1,0535 1,0591 1.0648 1,0705 1.0733 1.0789 +2 1.0234 1,0291 1,0347 1,0402 1.0459 1,0514 1,0571 1,0627 1.0655 1,0712 +6 1.0087 1.0143 0.0198 1.0253 1.0309 1.0363 1.0419 1.0475 1.0502 1.0557

Продолжение приложения

+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	1,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	1,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	1,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	1,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	1,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0, 9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Рис. 1 Ловушка-концентратор. Общий вид.

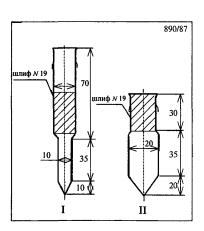


Рис. 2 Ловушка-концентратор.

Приложение 4

Вещества, определяемые по ранее утвержденным методическим указаниям

	James James Grand Company
Название вещества	Методические указания
1. Аммоний винно-кислый	Методические указания на фото-
кислый	метрическое определение аммиака:
	Сб. МУ в. 1—5.—М., 1981.—58 с.
	K = 9.82
Аммоний винно-кислый	Методические указания на фото-
	метрическое определение аммиака:
	Сб. МУ в. 1—5.—М., 1981.—58 с.
	K = 5.41
2. Калий винно-кислый	Методические указания по измере-
Калий виннокислый кислый	нию концентраций сульфата калия,
	калийной магнезии и хлорида калия
	в воздухе рабочей зоны: Сб. МУ, в.
	22.—M., 1988.—182 c.
u	К = 2,9 и 4,82
3. Калий сурьмоксид	Методические указания по поляро-
винно-кислый	графическому измерению концен-
	траций сурьмы в воздухе рабочей
	зоны: Сб. МУ, в. 8.—М., 1983.—90 с.
4 TT	K = 2,66
4. Натрий винно-кислый кислый	Методические указания по измере-
	нию концентраций натрия сульфата
	в воздухе рабочей зоны методом
	атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21.—М.,
	1986.—135 с.
	K = 7.48
Натрий винно-кислый	Методические указания по измере-
натрии винно-кишыи	нию концентраций натрия сульфата
	в воздухе рабочей зоны методом
	атомно-абсорбционной спектрофо-
	тометрии: Сб. МУ, в. 21.—М.,
	1986.—135 с.
	K = 4.22

Калий-натрий винно-кислый

Методические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21.—М., 1986.—135 с.

K = 3.39

5. Полиметилмочевина

Методические указания по гравиметрическому определению пыли в воздухе рабочей зоны и в системах вентиляционных установок: Сб. МУ, в. 1—5.—М., 1981.—235 с. Методические указания на фотодические указания по гравические указания в по гравические указания по гравические указания и в системах вентиляцию указания и в системах вентиляцию указания указания указания и в системах вентиляцию указания ука

6. Трифторметансульфофторид (фторангидрид трифторметан сульфокислоты) Методические указания на фотометрическое определение фторорганических соединений: Сб. МУ, в. 1—5.—М. 1981.—187 с.

K = 2

7. Хлоргидрат изонипекотиновой кислоты

Методические указания на фотометрическое определение диэтиламина в воздухе: Сб. МУ, в. 1—5.—М., 1981.—123 с. Отбор проб на фильтр со скоростью 2 л/мин.

Измерение концентраций вредных веществ в воздухе рабочей зоны

Методические указания МУК 4.1.0.406—4.1.0.465—96

Выпуск 33

Редактор Максакова Е. И. Технический редактор Гарри Д. В. Набор Юшкова Т. Г., Климова Г. И. Подписано в печать 8.06.00

Формат 60х88/16

Тираж 3000 экз.

Печ. л. 16,0 Заказ 6784

ЛР № 021232 от 23.06.97 г. Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11 Отделение реализации, тел.: 198-61-01

Отпечатано с оргинал-макета в филмале Государственного ордена Октябрьской Революции, ордена Трудового Красного Знамени Московского предприятия "Первая Образцовая типография" Министерства Российской Федерации по делам печати, телерадиовещания и средств массовых коммуникаций 113114, Москва, Шлюзовая наб., 10