УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации – Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

5 июня 2001 г. МУК 4.1.1044а—01 Дата введения: 1 октября 2001 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Газохроматографическое определение акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина в воздухе

Методические указания

Настоящие методические указания устанавливают газохроматографическую методику количественного химического анализа атмосферного воздуха или воздушной среды жилых и общественных зданий для определения содержания:

- диметиламина, диметилформамида и этиламина в диапазоне концентраций 0.001—0.1 мг/м³;
- акрилонитрила и диэтиламина в диапазоне концентраций $0.01-1.0~\mathrm{Mr/m}^3$;
- ацетонитрила, пропиламина и триэтиламина в диапазоне концентраций $0.05-2.0~{\rm Mr/m}^3.$

Физико-химические свойства веществ и их гигиенические нормативы представлены в табл. 1.

1. Погрешность измерений

Методика обеспечивает выполнение измерений акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина с погрешностью \pm 15 % при доверительной вероятности 0.95.

Таблица 1 Физико-химические свойства и гигиенические нормативы соединений

Наименование	Формула	Молеку- лярная	Т _ш .	Ткип. Ность,		ность, вгна			Гигиенический норматив, мг/м ³			Класс опас-
соединения		масса	°C	-0	г/см ³	вода	этанол	прочие	ПДК _{м.р}	ПДК _{с.с.}	ОБУВ	ности
Нафталин	C ₁₀ H ₈	128,17	80,3	218	1,17	0,03	95 ^{19,5}	л. р.эфир хлф, бзл	0,003	ı	_	4
Фенантрен	C ₁₄ H ₁₀	178,24	99,2	340	1,06	н. р.	20,014	р. эфир бзл, хлф	I	ı	0,01	_
Антрацен	C ₁₄ H ₁₀	178,24	216	342	1,25	н. р.	0,76 ¹⁶	р. эфир хлф	1	ı	0,01	_
Флуорантен	C ₁₆ H ₁₀	202,26	110	251 (60)	ı	н. р.	т.р.	р. эфир хлф, бзл	-	-	_	_
Пирен	C ₁₆ H ₁₀	202,26	150	392	1,28	н. р.	14,0	л. р. эфир хлф	ı		_	_
Хризен	C ₁₈ H ₁₂	228,29	254	448	ı	т. р.	0,8	т. р. бзл р. хлф	_	1	_	_

л. р. – легко растворим, р. – растворим, т. р. – трудно растворим, н. р. – не растворим, бзл – бензол, хлр – хлороформ.

2. Метод измерений

Измерение концентраций анализируемых соединений основано на газохроматографическом разделении на стеклянной колонке и детектировании азотно-фосфорным детектором (АФД) с предварительным концентрированием их из воздуха на твердый сорбент и последующей термодесорбцией.

Нижний предел обнаружения в анализируемом объеме пробы – 0,002 мкг.

Определению не мешают углеводороды, спирты, кислоты.

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

3.1. Средства измерений

Хроматограф с АФД	
Барометр анероид М-67	ТУ 2504—1797—75
Весы аналитические лабораторные	
ВЛА-200	ΓΟCT 24104—80E
Линейка измерительная	ΓΟCT 17435—72
Лупа измерительная	ΓΟCT 8309—75
Меры массы	ΓΟCT 7328—82E
Шприцы на 1, 10 мм ³ и 0,25 см ³	
фирмы Hamilton (Швейцария)	
Посуда мерная стеклянная	ΓΟCT 1770—74E
Программно-аппаратный комплекс	
«ЭКОХРОМ» для регистрации и	
обсчета хроматограмм	TY 5E2.148.003
Секундомер СДС пр-1-2-000	ΓΟCT 5072—79
Термометр метеорологический ТМ-1	ΓΟCT 112—78E
Малогабаритный пробоотборник модели 222-3	
фирмы Skc Inc. Eighny Four. Pa (США) или	
пробоотборник с аналогичными характеристиками	

3.2. Вспомогательные устройства

Дистиллятор	ТУ 61—1—721—79
Кольцо уплотняющее	
Насос водоструйный вакуумный	ГОСТ 10696—75
Редуктор водородный	ТУ 26—05—463—76
Редуктор кислородный	ТУ 26—05—235—70
Сорбционная трубка из	
термостойкого стекла	
длиной 80—82 мм внутренним	
диаметром 4 мм	
с узким отверстием (1—1,5 мм) у одного конца	
и толщиной стенки 1 мм	
Хроматографические стеклянные	
колонки с внутренним диаметром	
4 мм длиной 1 или 3 м	
Холодильник со льдом	
Четырехходовой кран, соединенный	
с дополнительной съемной крышкой испарителя	
Эксикатор	
Трубчатая электропечь	
2216	

3.3. Материалы

Азот сжатый, ос. ч.	ГОСТ 9293—74
Водород сжатый	ΓOCT 3022—89
Воздух сжатый	ΓΟCT 1188—73
Стекловолокно обезжиренное	
Стеклянные заглушки	
Хлопчатобумажные перчатки	ГОСТ 5007—87

3.4. Реактивы

Ацетон, ч. д. а.	ГОСТ 2603—79
Ацетонитрил, ОП-3, ос. ч.	ТУ—6—09—14—2167—84
Диметиламин, ч.	ТУ—6—09—11—2024—87
Диметилформамид, ч.	ΓΟCT 20289—74
Диэтиламин, ч.	ТУ 6—09—68—79
Насадка для заполнения колонки:	
28 % AT 223 + 4 % KOH на	

Gas Chrom R (80/100 меш) фирмы Alltech Associates (США) Полимерные сорбенты Chromosorb 103, 106 (60/80 меш) фирмы Alltech Associates (США) Силикагель-индикатор Триэтиламин, ч. Уголь активированный АГ-3 Этанол, х. ч. Этиламин, ч. Акрилонитрил, пропиламин фирмы

Fluka Chemie AG (Швейцария)

ГОСТ 8984—75 ТУ 6—09 1496—77 ГОСТ 20464—75 ГОСТ 10749.15—80 ГОСТ 19234—93

4. Требования безопасности

- 4.1. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019—79 и инструкцией по эксплуатации приборов, используемых в настоящей методике.
- 4.2. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005—88.
- 4.3. При съеме разогретой крышки испарителя на руки надевают хлопчатобумажные перчатки.

5. Требования к квалификации операторов

К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера-химика, с опытом работы на газовом хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150—69 при температуре воздуха (20 ± 5) °C, атмосферном давлении 630— 800 мм рт. ст. и влажности воздуха не более 80 %;
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка хроматографических колонок и сорбционных трубок, подготовка газовой линии, установление градуировочной характеристики, отбор проб.

7.1. Приготовление растворов

Исходный раствор № 1 диметиламина, диметилформамида и этиламина для градуировки ($c=10~\text{мг/см}^3$). 250 мг каждого соединения вносят в колбу вместимостью 25 см³ доводят до метки этанолом и тщательно перемешивают. Срок хранения — 1 неделя.

Исходный раствор № 2 акрилонитрила и диэтиламина для градуировки ($c=10~\text{мг/см}^3$). 250 мг каждого соединения вносят в колбу вместимостью 25 см³, доводят до метки этанолом и тщательно перемешивают. Срок хранения -1 неделя.

Исходный раствор № 3 ацетонитрила, пропиламина и триэтиламина для градуировки ($c=10~\text{мг/см}^3$). 250 мг каждого соединения вносят в колбу вместимостью 25 см³, доводят до метки этанолом и тщательно перемешивают. Срок хранения — 1~неделя.

Рабочий раствор № 1 диметиламина, диметилформамида и этиламина для градуировки ($c = 0.1 \text{ мг/см}^3$). 1 см³ исходного раствора № 1 помещают в мерную колбу вместимостью 100 см^3 , доводят до метки этанолом и тщательно перемешивают. Срок хранения – 1 неделя.

7.2. Подготовка хроматографической колонки и сорбционной трубки

Хроматографические колонки и сорбционные трубки перед заполнением насадками промывают горячей дистиллированной водой, 10 см³ ацетона, высушивают в токе инертного газа.

Для разделения компонентов используют одну из двух рекомендуемых колонок:

- колонку № 1 длиной 1 м, заполненную сорбентом Chromosorb 103;
- колонку № 2 длиной 3 м, заполненную сорбентом Gas Chrom R с жидкой фазой AT 223.

Заполнение колонок проводят под вакуумом. Концы колонки закрывают стекловолокном и, не подключая к детектору, кондиционируют в токе газа-носителя (азота) с расходом 20 см³/мин при температуре 160°C в течение 18—24 ч. После охлаждения колонку подключают к детектору,

записывают нулевую линию в рабочем режиме. При отсутствии мешающих влияний колонка готова к работе.

Сорбционную трубку заполняют сорбентом Chromosorb 106 или 103, прогретым предварительно в течение 2—3 часов при 250 °C. Сорбент фиксируют в трубке с двух сторон стекловолокном. Кондиционируют в токе газа-носителя (азота) с расходом 10 см³/мин при температуре 250 °C в трубчатой электропечи в течение 24 часов; затем трубку выводят из зоны нагрева и, не прерывая потока газа-носителя, охлаждают до комнатной температуры. Трубки с заглушенными концами хранят в течение 2 недель в промытом и просушенном эксикаторе, на дно которого насыпаны слой сухого силикагеля и мешочки с активированным углем.

7.3. Подготовка газовой линии к анализу

В схему газовой линии прибора подключают четырехходовой кран, один конец которого соединен с линией газа-носителя, второй – с верхом корпуса испарителя, третий – заглушен, четвертый выход соединяют с дополнительной съемной крышкой испарителя.

В дополнительной крышке испарителя устанавливают уплотняющее кольцо, герметизирующее сорбционную трубку во внутреннем объеме испарителя.

В первом положении крана газ-носитель поступает в испаритель через верх его корпуса и далее в хроматографическую колонку, во втором положении — через дополнительную крышку, сорбционную трубку и также в хроматографическую колонку.

В среднем положении крана поток газа-носителя прерывается и не поступает в испаритель и колонку.

7.4. Установление градуировочной характеристики

Градуировочные характеристики устанавливают на градуировочных растворах акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина (эффективность сорбции на сорбенте более 95 %) методом абсолютной градуировки. Они выражают зависимость площади пика соответствующего вещества на хроматограмме (мм² – при ручном расчете или мВ с – при автоматическом обсчете с использованием программно-аппаратного комплекса) от содержания (мкг) по 6-ти сериям растворов для градуировки. Каждая серия состоит из 6 растворов.

Градуировочные растворы диметиламина, диметилформамида и этиламина готовят в мерных колбах вместимостью 100 cm^3 . Для этого в каждую колбу вносят рабочий раствор № 1 для градуировки в соответствии с табл. 2, доводят объем этанолом до метки и тщательно перемещивают.

Градуировочные растворы акрилонитрила и диэтиламина готовят в мерных колбах вместимостью 100 см^3 . Для этого в каждую колбу вносят исходный раствор № 2 для градуировки в соответствии с табл. 3, доводят объем этанолом до метки и тщательно перемешивают.

Градуировочные растворы ацетонитрила, пропиламина и триэтиламина готовят в мерных колбах вместимостью 100 см³. Для этого в каждую колбу вносят исходный раствор № 3 для градуировки в соответствии с табл. 4, доводят объем этанолом до метки и тщательно перемешивают. Срок хранения всех градуировочных растворов – 1 неделя.

На сорбент через узкое отверстие в сорбщионной трубке на глубину 5—8 мм вводят 1 мм³ одного из градуировочных растворов. Затем вставляют трубку (широким концом) в уплотняющее кольцо съемной крышки испарителя, соединенной с четырехходовым краном; прерывают поток газа-носителя этим краном. Отвернув крышку на испарителе, быстро вводят в него трубку, закрывают испаритель дополнительной крышкой и одновременно включают секундомер. Через 10 с поворачивают кран-переключатель и газ-носитель, проходя через крышку испарителя, выталкивает смесь из трубки в хроматографическую колонку. Определение соединений проводят на одной из рекомендуемых колонок в следующих условиях:

температура термостата колонки № 1 программируется от 70 $^{\circ}$ C (8 мин изотерма) до 140 $^{\circ}$ C (20 мин изотерма) со скоростью 5 град/мин;

температура термостата колонки № 2 программируется от 90 $^{\circ}$ C (8 мин изотерма) до 140 $^{\circ}$ C (20 мин изотерма) со скоростью 5 град/мин;

температура испарителя 210 °C; температура детектора 210 °C; расход газа-носителя (азота) 20 см³/мин.

Таблица 2

Растворы для установления градуировочной характеристики при определении концентраций диметиламина, диметилформамида и этиламина

Номер раствора для градуировки		2	3	4	5	6
Объем рабочего раствора № 1 (c = 0,1 мг/см ³), см ³	0	2,0	5,0	10,0	60,0	100,0
Содержание вещества, мкг в 1мм ³	0	0,002	0,005	0,01	0,06	0,1

Таблица 3

Растворы для установления градуировочной характеристики при определении концентраций акрилонитрила и диэтиламина

Номер раствора для градуировки	1	2	3	4	5	6
Объем исходного раствора № 2 $(c = 10 \text{ мг/см}^3), \text{ cm}^3$		0,1	0,4	1,0	6,0	10,0
Содержание вещества, мкг в 1мм ³	0	0,01	0,04	0,1	0,6	1,0

Таблица 4

Растворы для установления градуировочной характеристики при определении концентраций ацетонитрила, пропиламина и триэтиламина

Номер раствора для градуировки		2	3	4	5	6
Объем исходного раствора № 3 (c = 10 мг/см^3), см ³	0	0,5	1,0	5,0	10,0	20,0
Содержание вещества, мкг в 1мм ³	0	0,05	0,1	0,5	1,0	2,0

Шкала измерителя тока усилителя детектора -2×10^{10} A; скорость движения диаграммной ленты -240 мм/ч; время удерживания компонентов на колонке № 1:

• диметиламин – 6 мин 48 с, этиламин – 9 мин 04 с, пропиламин – 12 мин 55 с, ацетонитрил – 13 мин 28 с, акрилонитрил – 15 мин 10 с, диэтиламин – 16 мин 34 с, триэтиламин – 21 мин 32 с, диметилформамид – 27 мин 02 с;

время удерживания компонентов на колонке № 2:

• диметиламин – 3 мин 37 с, этиламин – 4 мин 09 с, пропиламин – 5 мин 25 с, ацетонитрил – 9 мин 54 с, диэтиламин – 10 мин 01 с,

акрилонитрил -11 мин 09 с, триэтиламин -14 мин 55 с, диметилформамид -34 мин 21 с.

На полученных хроматограммах рассчитывают площади пиков компонентов и по средним результатам из 5-ти измерений строят градуировочные характеристики. Градуировку проводят 1 раз в месяц и при смене реактивов.

Отбор проб воздуха проводят согласно ГОСТу 17.2.3.01—86. Каждая проба воздуха одновременно отбирается на 2 трубки. Воздух со скоростью $0.2~\rm дм^3$ /мин аспирируют в течение $10~\rm мин$ через узкое отверстие сорбционной трубки, предварительно охлажденной в холодильнике до $0~\rm ^{\circ}C$. После окончания отбора пробы концы трубок герметизируют заглушками и помещают в чистые пробирки с притертыми пробками. Срок хранения отобранных проб – не более $3~\rm cytok$.

8. Выполнение измерений

При выходе прибора на режим вставляют сорбционную трубку с отобранной пробой в уплотняющее кольцо съемной крышки испарителя и анализируют согласно п. 7.4.

На хроматограмме рассчитывают площадь каждого пика и по градуировочному графику определяют массу вещества в пробе.

Для получения результатов измерения содержания веществ проводят анализ двух параллельных проб воздуха (двух трубок).

9. Обработка результатов измерений

Концентрацию каждого вещества в атмосферном воздухе (мг/м³) вычисляют по формуле:

$$C = \frac{m}{V_0}$$
, где

m — содержание вещества в пробе, найденное по градуировочной характеристике, мкг;

 V_0 – объем пробы воздуха, приведенный к стандартным условиям, дм³;

$$V_0 = \frac{Vt \cdot 273 \cdot P}{(273 + t) \cdot 760}$$
, где

Vt – объем пробы воздуха при температуре отбора, дм³;

P – атмосферное давление в месте отбора проб, мм рт. ст.;

t – температура воздуха в месте отбора проб, °C.

10. Оформление результатов измерения

Средние значения результатов измерений анализируемых соединений в воздухе оформляют протоколом по форме:

Протокол №

количественного химического анализа акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина в воздухе

1. Дата проведения анализа		

- 2. Место отбора пробы __
- 3. Название лаборатории
- 4. Юридический адрес организации

Результаты химического анализа

Шифр или №	Определяемый	Концентрация,	Погрешность измерения, % мг/м ³	
пробы	компонент	мг/м ³		
			_	

Исполнитель:

Руководитель лаборатории:

11. Контроль погрешности измерений

Контроль погрешности измерений концентраций определяемых веществ проводят на граду ировочных растворах.

Рассчитывают среднее значение результатов измерений концентрации в градуировочных растворах:

$$\overline{C}_{ni} = \frac{1}{n} \cdot (\sum_{i=1}^{n} C_{ni})$$
, где

n – число измерений компонента в пробе градуировочного раствора;

 $C_{\it ni}$ — результат измерения содержания вещества компонента в і-ой пробе градуировочного раствора, мкг.

Рассчитывают среднее квадратичное отклонение результата измерения содержания вещества в градуировочном растворе:

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(C_{ni} - \overline{C}_{ni}\right)^{2}}{n-1}}$$

Рассчитывают доверительный интервал:

$$\Delta \overline{C}_{ni} = \frac{S}{\sqrt{n}} \cdot t$$
, где

t — коэффициент нормированных отклонений, определяемых по табл. Стьюдента, при доверительной вероятности 0.95.

Рассчитывают погрешность определения содержания:

$$\delta = \frac{\Delta \overline{C_i}}{\overline{C_{ni}}} \cdot 100 , \%$$

Если $\delta \leq 15~\%$, то погрешность измерений удовлетворительная. Если данное условие не выполняется, то выясняют причину и повторяют измерения.

Методические указания разработаны А. Г. Малышевой (НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН, г. Москва) и Е. Е. Сотниковым (Всероссийский центр медицины катастроф «Защита», г. Москва).