МИНИСТЕРСТВО МОРСКОГО ФЛОТА

РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ
ГЛУБОКОВОДНЫХ
ПОРТОВЫХ
ГИДРОТЕХНИЧЕСКИХ
СООРУЖЕНИЙ С
ИСПОЛЬЗОВАНИЕМ
СВАРНЫХ ШПУНТОВ

РД 31.31.33 - 85

MOCKBA 1985

yterputan

Главный инженер института Сеюзмеринипры

CONSMOTHER

10.А.Ильницкий "25" икия 1985 г.

РЕКОМЕНДАЦИИ

ПО ПРОЕКТИРОВАНИЮ ГЛУБОКОВОЛНЫХ ПОРТОВЫХ ТИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ СВАРНЫХ ШПУНТОВ

PI 31.31.33 - 85

Заместитель директора Союзморанипроекта

В.И.Костоков

" 29" 64 1985 r.

PASPAEOTAH

Государственным проектно-изискательским и научно-исследовательским институтом морского транспорта "Союзморниипроект".

Заместитель директора по научной работе, д.т.н. В.Д.Костюков

Руководитель разработки к.т.н. Г.М.Алексанпров

Исполнители: д.т.н. А.Г.Довгаленко

к.т.н. А.Н.Максимов

к.т.н. А.Н.Котц

YTBEP##EH

Государственным проектно-изыскательским и научно-исследовательским институтом морского транопорта "Союзмерниипроект'.

Главний инженер О.А.Ильницкий

Рекомендации по проектированию глубсководных портових гидро-технических сооружений с использованием сварных шпунтов

РД 31.31. 33 - 85 Вволится внервне

Настоящий РД устанавливает рексмендации по проектировани глубоководных портовых гидротехнических сооружений с использоганием стальных сларных шцунтовых свай зетового профиля, обеспечивающих момент сопротивления не менее 7000 см³/м стенки.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

- I.I. Рекомендации распространяются на конструкции причальных сооружений со шпунтовой стенкой, представленные на рис. I
- 1.2. Глубоководные портовые гидротехначеские сооружения с использованием стальных сварных шлунтовых свай, возводемие в зонах распрестранения вечномерэлых грунтов, в сейсмических районах, на оползневых участках и просадочных грунтах следует проектировать с учетом дополнительных требований, предъявляемых к строительству гидротехнических сооружений в указанных условиях.

1.3. Класс капитальности причального сооружения устанавливают в соответствии со СНиП П – 51 – 74.

2. НАГРУЗКИ И ВОЗДЕЙСТВИЯ

- 2.1. Активное и пассивное давления грунта на шпунтовую стенку определяются в соответствии с требованиями РТМ 31.3016-78
- 2.2. Волновне воздействия на причальные и оградительные сооружения, включающие стальные шпунтовые сваи повышенной несущей сиссобности, определяются в соответствии со СНиП 2.06.04-82 и РД 31.33.02 - 81.
- 2.3. Нагрузки от навала судна при подходе к сооружению и от натяжения швартовов, а также ледовые воздействия на конструкции, включающие стальные сварные шпунтовче сваи большой несущей способности, необходимо определять в соответствии со СНиП 2.06.04 82.
- 2.4. Коэффициенты перегрузки, условий работы, сочетаний нагрузок, необходимые для определения расчетных усилий, принимаются в соответствии с ВСН 3 80 минморфлот

3. ОПРЕДЕЛЕНИЕ УСИЛИЙ

- 3.1. Расчет нормативных значеный изгибающих моментов в лицевой стенке больверка, напряженый в зоне контакта "свая-грузт" деформаций шпунтовой стенки и перерезывающих сил следует определять с учетсм деформации сооружения по программе на ЭВМ, приведенной в РТМ 31.3016 - 78.
- 3.2. Елияния нагруженной фундаментной части подкранового пути

лицевую стенку больнерка следует учитывать, если фундамент полностью расположен в пределах призми обрушения. В этом случае дополнительную составляющую эпюры бокового давления грунта от нагруженной фундаментной части следует определять по методике, изложеной в Приложении I.

- 3.3. Для предварительного определения величин изгибающих моментов, анкерных усилий и глубин забивки шпунтовых отай рекомендуется использовать графики, приведенные на рис. 2 - 4.
- 3.4. Основние характеристики сварного зетового шлунта приведены в Приложении 2, а его расход в конструкции можно оценивать по таблице П.3. І Приложения 3.

4. ОСНОВНЫЕ РЕКОМЕНЛАЦИИ ПО КОНСТРУИРОВАНИЮ

- 4.1. Отонику за стенку причала рекомендуется производить несчаным грунтом с характерыстиками, определяемыми лабораторными и полевыми методами. При отсутствии лабораторных данных в первом приближении допускается принимать вермативное значение угла внутреннего трения грунта φ по табл. 4.1.
- **4.2.** Анкерные тяги следует выполнять из стального проката круглого сечения или стальных канатов.
 - Примечания: I. Выбор конструкции анкерной тяги производится путем технико-экономического сравнения вариантов.
 - 2. Применение стального проката ограничивается диаметром I30 мм.

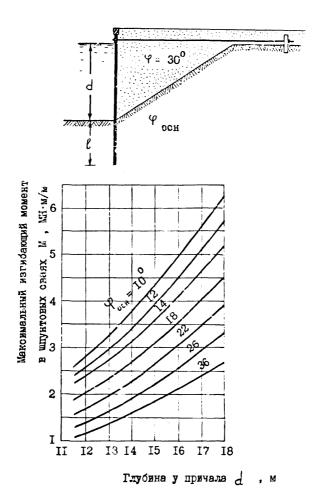


Рис. 2. График зависимости величины максимального изгибающего момента в шпунтовых сваях от глубины у причала и угла внутреннего трения грунта основания

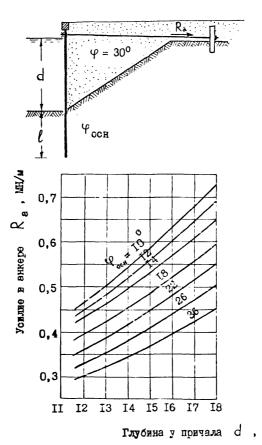


Рис. 3. График зависимости усилий в анкере от глубины причала и угла внутреннего трения групта эснования

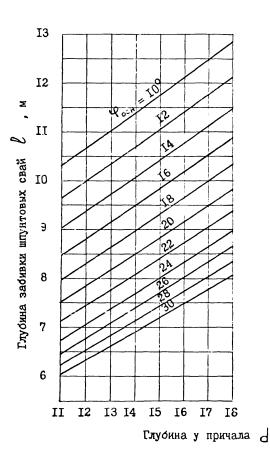


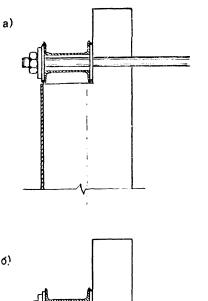
Рис. 4. График зависимости глубины забивки шпунтовых свай от глубины у причала и угла внутреннего трения грунта основания

Таблина 4.1.

Нормативные характеристики грунтов в засынке подпорных стен

Виды грунтов	Относи- тельная плот- ность	Угол внут- реннего трения	Модули деформаций Е и ᢊ ири нагрузке R					
в засыпке			0,2		0,4		0,6	
	2		Е	M	E	ju	E	<i>_</i> ^^
Горная масса	0,25 0,5 0,75	34 35 36	28 30 60	0,23	20 24 48	0,24	16 18 37	0,24
Гравелис- тый или щебеноч- ный грунт	0,25 0,5 0,75	32 34 35	20 27 55	0,25	I£ 22 43	0,26	12 16 31	0,27
Крупнче пески	0,25 0,5 0,75	32 33 34	20 23 47	0,28	15 20 38	0,29	I2 I4 30	C,30
Средние пески	0,25 0,5 0,75	3I 32 33	16 20 40	0,31	12, 16 35	0,32	I0 I2 28	0,33
Мелкие пески	0,25 0,5 0,75	30 31 32	12 16 35	0,33	I0 I4 29	0,33	9 10 24	0,34
Пылаватые пески	0,25 0,5 0,75	28 29 30	10 12 21	0,33	7,5 IO I6,5	0,33	6 7 12	0,34

Примечания: I. $\tilde{R}=R/R_{np}$; R_{np} — несущая способность грунтового основания, определяемая по формуле СНиП П — 15 — 74: $P_{np}=(A\cdot b\cdot y + B\cdot q + \mathcal{D}\cdot c)$; R — нагрузка на основание.


- 2. Модуль горизонтальной деформации $E_{\underline{r}}$, МПа рекомендуется принимать 0,65 E при \bar{R} = 0,2.

- 4.3. Пример конструктивного решения закрепления шпунтовой стенки анкерами круглого сечения показан на рис. 5,а.
- 4.4. Варманти крепления стальных канатов, используемых в качестве анкерных тяг, к шпуетовой стенке показаны на рис. 5,6 и 6.
- 4.5. Сортамент швеллера, находящегося в составе анкерного пояса, в зависимости от величини R_{α} допускается определять: в соответствии со схемой крепления анкера по рис. 5 с использованием графиков на рис. 7; в соответствии со схемой крепления анкера на рис. 6 с использованием графиков на рис. 8.
- 4.6. Крепления стальных канатов к анкерным опорам в виде анкерных станок, козловых опор, анкерных массивов показалы на рас. 9.
 - 5. ОСОБЕННОСТИ ТЕХНОЛОГИИ РАБОТ ПРИ ВОЗВЕДЕНИИ КОНСТРУКЦИЙ ИЗ СВАРНОГО

IIIIYHTA

- 5.1. В данном разделе приведени рекомендации по последовательности выполнения работ при строительстве и реконструкции портовых гидротехкических сооружений из сварного шпунта.
- 5.2. Погружение зетового шпунта следует ссуществлять пакетама с использованием направляющих, аналогичных тем, которые примсияются для погружения шпунтовых свай типа Ларсен.

Примечание. Перед набором зетового шпунта в пакеть необходиме произвести проверку замков шаблоном.

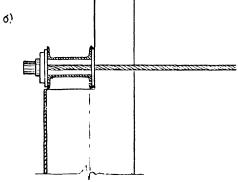


Рис. 5. Варианти крепления анкерных тяг к шпунтовой стекке: а — для анкерных тяг круглого сечения; б — для анкерных тяг из стельных канатов

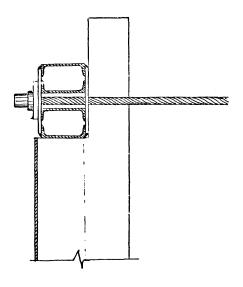


Рис. 6 . Вариант крепления анкерной тяги из стального каната

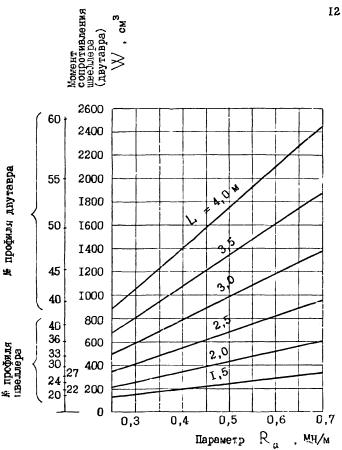


Рис. 7. График зависимости момента сопротивления швеллера (двутавра) от параметра R_a расстояния межд анкерамы для варианта крепления в соответствии с рис. 5

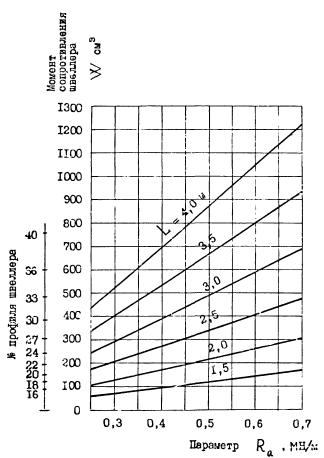


Рис. 8. График зависимости момента сопротивления швеллера от параметра R_{α} в расстояния между анкерами для варианта креплентя в соответствии с рис. 6

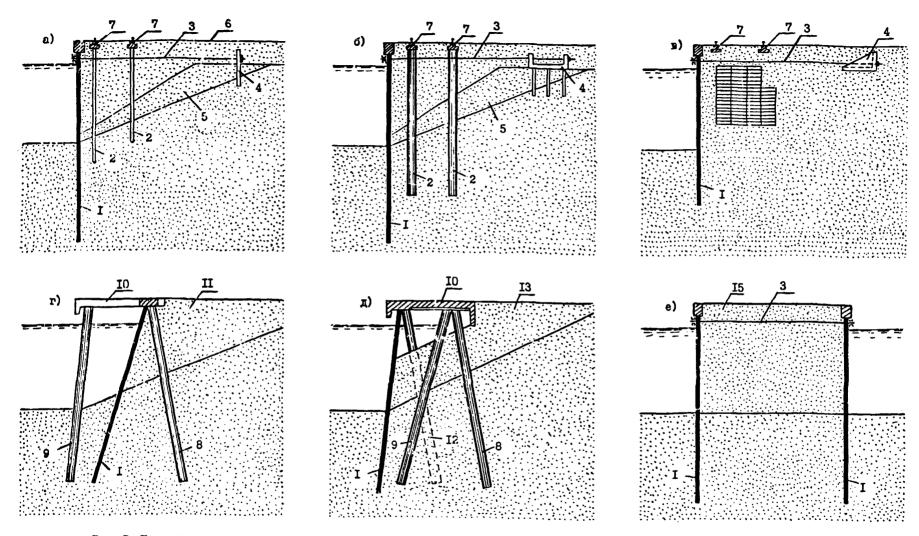


Рис. І. Конструкции причальних сооружений, видочающие шпунтовую стенку из стального сварного зетового шпунта:

- а больветк с подкрановими путями на свейном основании; б больверк с испольвованием ангенных тяг из стальных канатов;
- в реконструируемая причальная стенка; г свайный причал с задней наклонной шпунтовой стенкой; д свайный причал с передним шпунтових стенкой; д свайный причал с передним причал с задней наклонной шпунтовой стенкой; д свайный причал с передним причал с задней наклонной шпунтовой стенкой; д свайный причал с задней шпунтовой стенкой; д свайный причал с задней наклонной шпунтовой стенкой; д свайный причал с задней шпунтовой шпунтовой с задней шпунтовой с задней шпунтовой с задней шпунтовой ш

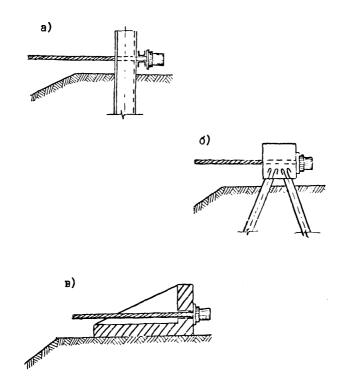


Рис. 9. Варианти креплений стальных канатов к анкерным опорам в виде: а - анкерных стенок; б - козловых опор; в - анкерных массивов

- 5.3. Погружение шпунта и свай подкранових путей может ссущи, так и с плавередств, в зависимости от проектного положения динии кордона причала этносительно уреза воды, наличия технических средств, грунтов основания и т.п.
- 5.4. Погружание шпунтовых свай в зависимости от грунтов основания, объема пакетов и других условий, может осуществляться при помощи молота, вибромолота или сибратора.
- 5.5. При строительстве причальных сооружений типа больверк с использованием подкрановых путей на свайном основании (рис. I,a) рекомендуется следующая последовательность производства работ:
- 5.5.I. Погружение шпунтовых свай для устройства стенки больвэрка I.
- 5.5.2. Отеника призмы грунта 5 в районе устройства анкерной стенки 4.
- 5,5.3 Погружение задней шпунтовой стенки 4, служащей для закрепления анкерних тяг 3.
- 5.5.4. Установка анкерных тяг 3.
- 5.5.5. Отсыпка грунта для образования территории 6.
 - Примечание. Отсыпку грунта необходимо производить послойно в направлении от берега к шпунтовой этенке.
- 5.5.6. Погружение свай подкрановых путей 2.
- 5.5.7. Устройство верхней надотройки шкунтовой стенки и подкрановых балок.

- Примечание. До устройства подкрановых балок и надстройки отснику грунта в прикордонной зоне следует выполнять до уровня установки анкерных тяг с принятием мер по защите тяг от коррозии.
- 5.5.3. При использовании под подкрановие пути грунтоцементных и илоцементных свай их устройство виполняют после окончания работ по образованию территории причала.
 - Примечания: І. В морских илах илоцементные стаи изготавливаются на сульфатостойком цементе, на основании установленной в лаборотории дозировки цемента.
 - 2. Состав запрепляжнего раствора и его количество на I м³ объема сваи устанавливается для конкретных сбъектов путем сравнительных лабораторных исследствий и технико-экономических расчетов. Рецептуру илоцемента следует принимать в соотсстстви с РП 31.31.29 82.
 - 3. Диаметр свай рекомендуется назначать в пределах от 0,6 до I м.
 - 4. При использование грунтоцементных и илоцементных свай необходимо выполнять требования, изложенные в раздел 6 РП 31.31.29 82.
- 5.6. Строительство причального сооружения типа больверк с использованием анкерных тяг из стальных канатов необходимо выполнять, соблюдая следующую последовательность работ (рис. I.6):

- 5.6.1. Погружение свай подкранового пути 2.
- 5.6.2. Погружение шпунтовки свай для устройства стенки больверка I.
- 5.6.3. Отсыжа призми грунта 5, на которой возводится сооружение 4, служащее для закрепления стальных канатов 3.
- 5.6.4. Устройство сооружения 4, воспринимающего гордзонтальное усилие от закрепления стального каката 3.
- 5.7. Реконструкцию причальных слеружений при помощя стальных шпунтовых свай, закрепляемых стальным канатами, следует выполнять при соблюдении следующей последовствлености производства работ (рис. І.в):
 - 5.7.I. До производства дноуглубительных работ стальние шпунтовне сваи I погружают перод существующим сооружением.
 - 5.7.2. При погружении шпунтовых срай остаются в сыле условия, изложеные в п. 5.2.
 - 5.7.3. Для того, чтоби не нарушать эксплуатацию железнодорожных путей реконструируемого участка причала, установку стальных канатов производят методом продавливания труб через массив грунта с последующим протягиванием стальных канатов через труби.
- 5.8. Строительство свайного причала с задним шпунтом (рис.I, г виполняют в следующей последовательности:
 - 5.8.I. Производится погружение заднего ряда наклонних свай 8.
 - 5.8.2. Выполняется погружение ряда стальных шпунтовых свай I с использованием горизонтальных направлярщих, прикрапленным к сваям 8.

- 5.8.3. После закрепления отунтовой стенки за задний ряд овай 8 производится погружение переднего ряда свай 9.
- 5.8.4. После устройства верхней надстройки ІО производят отенику грунта в назуху причала II.
 - Примечание. Для выполнения конструкции причального сооружения в соответствии с рис. I, г необходимо применять копер, позволяющий погружать наклонные сваи.
- 5.9. Строительство свайного причала с передним шпунтом выполняется в следующей последовательности (рис. I.n):
 - 5.9.1. Производится погружение свай 8,9 и 12; затем погружается стальной шпунт Т с использованием направляющих, прикрепленили к сваям 12.
 - 5.9.2. Ведется монтаж и омоноличинание верхней надстройки IO.
 - 5.9.3. Производится отсинка грунта I3 за стенку.

 Примечание к п. 5.8.4. остается в силе
 и для строительства свайного причала
 с передним шпунтом.
- 5.10. Строительство пирса или оградительного сооружения из нарних взаимсзаанкеренних шпунтових стенок с грунтовим заполнением (рис, I,e) выполняется в следующей последовательности:
 - 5.10.1. Производится одновременное погружение двух парадлельных рядов шпунтовых свай I, образующих стенки возводимого сооружения.
 - 5.10.2. Через определяемое проектом расстояние производится погружение перпендикулярных к продольной оон сооружения шпунтових перемичек.
 - 5.10.3. После образования лиеек производят установку

анкерных тяг 3 и саполнение ячеек грунтом 15. Для обеспечения сохранности шпунта не допускается оставлять ячейки без заполнения их грунтом на длительный период.

Примечание. При строительстве сооруженый из парных взаимозаанкеренных шпунтовых стенок с грунтовым заполненисы, расположенных в районе залегания слабых грунтов в сонования, следует придерживаться указаний, приведенных в п. 5.2. и в примечении к п. 5.5.7.

Приложение I. (рекомендуемое)

ОПРЕДЕЛЕНИЕ ДОПОЛНИТЕЛЬНОЙ СОСТАВЛЯЮЩЕЙ ЭПЮРЫ БОКОВОГО ДАВЛЕНИЯ ГРУНТА ОТ НАГРУЖЕННОЙ ФУНДАМЕНТЬОЙ ЧАСТИ

В тех случаях, когда фундамент для подпрановых путей полностью расположен в пределах призмы обрушения (см. рис. 10), и при этом выполняется условие

$$\frac{9}{H^2 \cdot g \cdot f_m \cdot tg(45^2 - 4/2)} > 0,20, \qquad (1)$$

рекомендуется учитивать дополнительную составляющую к эшере активного давления грунта, действующего на шпунтовую стенку.

Здесь:

 рагномерно распределенная вдоль кордона нагрузка от колес крана или перегружателя, кН/м;

Н - превишение отметки причала над уровнем дна, м;

g - ускорение свобсдного падения, м/с 2 ;

Ч - угол внутреннего трения грунта засыки, град;

 \int_{m}^{∞} — средняя плотность грунта засынки за стенкой, т/ \mathbb{R}^{3} , определяемая по графику на рис. П в зависимости от значений плотности соответственно подводного ($\int_{\mathbf{H}}^{\infty}$) и надводного ($\int_{\mathbf{H}}^{\infty}$) грунта засчики, висоти надводной части грунта h.

Предельное значение величини H = H_I, до которой следует учитивать нагруженную фундаментную часть подкранового пути, при различных значениях Q показано на ргс. I2 - I6.

Дополнительную равномерно-распределенную нагрузку на

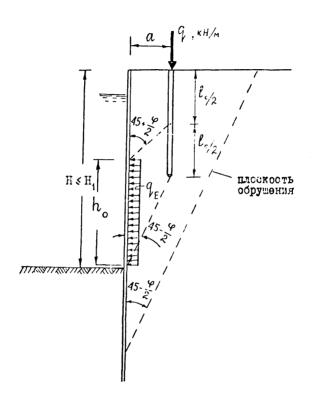


Рис. 10 Скема определения дополнительной нагрузки на шпунтовую стенку от нагруженной фундаментной чести, расположенной в зоне призмы обруженыя

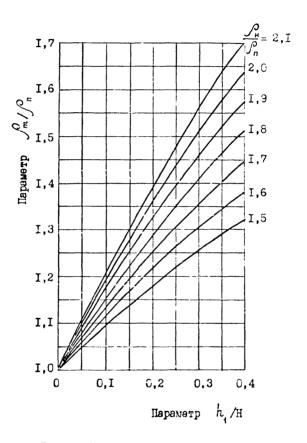
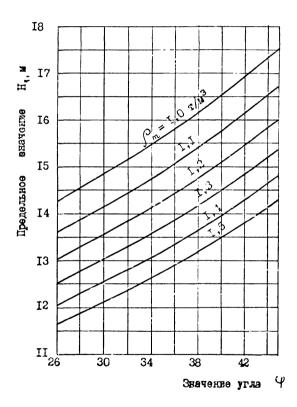



Рис. II Номограмма для определения средней плетности грунта засыпки за стенкой

, град.

Рвс. I2. Номограмма для определения предельного значения H_4 , до которого необходимо учитивать нагрузку от колес крана или перегрукателя $Q_c = 250$ кП/м.

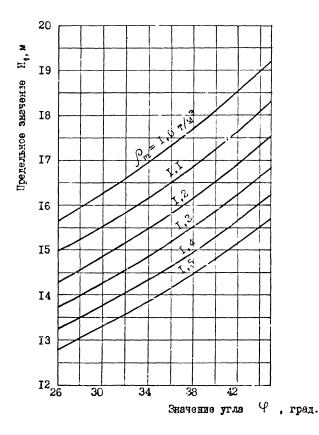
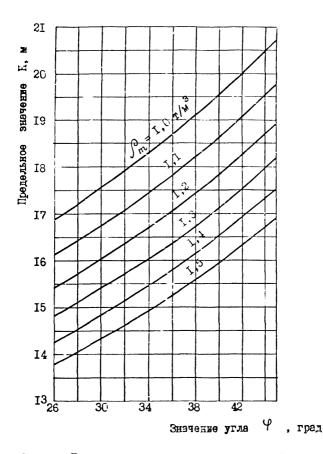



Рис. 13 Номограмма для определения предельного значения H_t , до которого необходимо учитывать нагрузку от колес крана или перегружателя Q = 200 kH/M

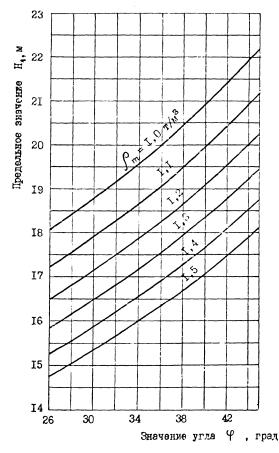


Рис. I5. Номограмма для определения предельного значения H_{i} , до которого необходимо учитивать нагрузку от колес крана или перегрукателя Q = 400 kH/m

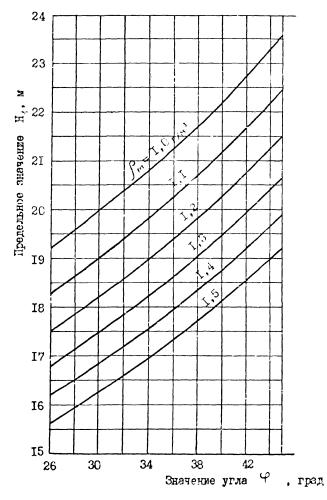


Рис.16. Номограмма для определения предельного значения H_4 , до которого необходимо учитывать нагрузку от колес крана или перегрумателя $Q_{\ell} = 450$ кН/м

шиунтовую стенку φ_{ϵ} (см. рис. 10) следует определять по формуле

$$Q_{E} = \frac{E_{aH} - E_{a}}{h_{a}}, \qquad (2)$$

где E_a - активное давление грунта на шпунтовую стенку, кН/м;

 $E_{\rm au}$ — то же при наличии нагруженной фундаментной части подкранового пути, кН/м;

h - ширина полосы дополнительной равномерно-распределенной нагрузка, м.

Реличина Е по определяется по формуле

$$E_{BH} = 0.5 \text{ H}^2 \rho_m q \cdot \lambda_a$$
, (3)

где

$$\lambda_a = \frac{tgd + B_0}{tg} (\alpha + \gamma); \qquad (4)$$

$$tgd = -tg\varphi + \sqrt{(I + tg^2\varphi)(I - \frac{B_0}{tg\varphi})};$$
 (5)

$$B_0 = \frac{2 \, Q}{H^2 \, \rho_m \, g} \qquad (6)$$

 λ_a - коэффициент активного давления грукта;

∠ - угол обрушения, град;

В - бэзразмерный коэффициент.

Величина и определяется виражением:

$$h_0 = \frac{\ell_c}{2} + a \left[etg \left(45^0 - \frac{\varphi}{2} \right) - etg \left(45^0 + \frac{\varphi}{2} \right) \right], \qquad (7)$$

где: ℓ_c — длина сваи фундаментной части подкранового пути, м α — расстояние от расчетной плоскости восприятия давления грунта лицевой стенкой, проходящей через центральную ось шпунтового ряда, до точек приложения нагрузки q.

Рассмотрим пример расчета.

Пусть
$$Q = 450$$
 кH/м; $H = 15$ м; $\int_{\infty}^{\infty} = 1.3$ т/м³; $Q = 30^{\circ}$; $E_a = 500$ кH/м; $\ell_c = 7$ м; $\alpha = 3$ м.

Из выражения (I) имеем:

$$\frac{450}{15^2 \cdot 9.81 \cdot 1.3 \cdot tg \left(45^{\circ} - 30^{\circ}/2\right)} = 0.27 > 0.2.$$

Следовательно, необходимо учитывать дополнительную составляющую эпори бокового давления от нагруженной фундаментной части подкранового пути. Тот же результат можно получить, если воспользоваться графиком на рис. 16.

По формуле (6) определяем безразмерный коэффициент $B_{\rm c}$

$$B_0 = \frac{2.450}{15^2 \cdot 1.3.9.81} = 0.314.$$

Тангенс угла обрушения будет равен (5):

$$tgd = -tg30^{\circ} + \sqrt{(1+tg^{2}30^{\circ})(1-\frac{0.314}{tg30^{\circ}})} = 0.2025.$$

Коэффициент активного девления грунта (4) будет иметь значение:

$$\lambda_a = \frac{0.2025 + 0.314}{4g (II.3^0 + 30^0)} = 0.584.$$

Активное суммарное давление грунта на стенку (3) при наличи нагрузки 9 будет равно:

$$E_{aH} = 0.5 \cdot 15^2 \cdot 1.3 \cdot 9.82 \cdot 0.584 = 838 \text{ kH/m}.$$

«Прина полоси дополнительной равномерно-распределенной нагрузки равна:

$$h_o = \frac{7}{2} + 3 \left[\text{ctg} \left(\frac{45^\circ - 30^\circ}{2} \right) - \text{ctg} \left(\frac{45^\circ + 30^\circ}{2} \right) \right] = 6,96 \text{ M}.$$

Определяем дополнительную равномерно-распределенную нагрузку бокового давления грунта на шпунтовую стенку по формуле (2):

$$q_{\rm E} = \frac{838 - 500}{6.96} = 48,5 \text{ kHz}.$$

Прилскение 2 (справочное)

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СВАРНОГО ЗЕТОВОГО ШПУНТА

Поперечное сечение шпунтовой сваи показано на рис. 17.

в табл. П.2.1 приведены характеристики сварного зетового шпунта.

Таблица Н.2. І

Момент сопро- тивле- ния одной шпун- тины	момент сопро- тивле- кия I м стенки	Высота профиля Н _О	Ширина листовой загстов- ки для стенки В	Macca I м ² стенки	Показатель эйдективности профиля шпунтовей сваи
СМВ	см ³	ММ	MM	KT/M ²	cm3/kr
2525	5050	420	250	269,0	I8 , 8
2970	5940	470	300	278,5	21,3
3557	7114	550	380	293,6	24,2
4141	8282	620	450	306,8	27,0
4572	9142	670	500	316,2	29,0
5100	10200	730	560	327,6	31,2
5461	10922	770	600	335,0	32,3
5922	1 I 843	820	650	344,4	34,4
6487	12974	880	710	355,6	36,4
6872	13744	920	750	363,2	37,8
73 63	14726	970	800	372,8	39,6

Примечание. При необходимости данный сортамент может быть расширен.

8050	16 100	1070	900	195,5	***************************************

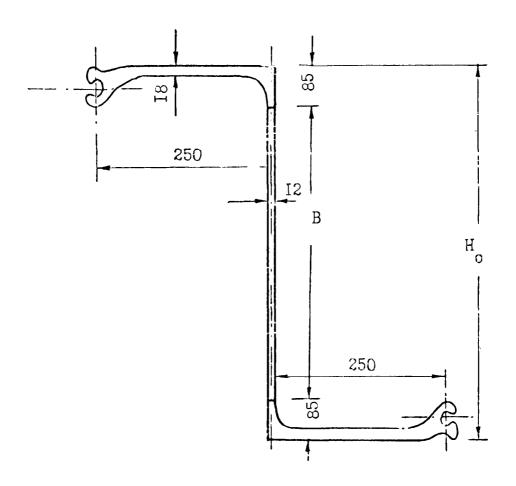


Рис. 17. Поперечное сечение сварного зетового впунта

Приложение 3 (справочное)

ОРИЕНТИРОВОЧНЫЕ ДАННЫЕ ПО РАСХОДУ ШПУНТА

Расчети, выполненные в соответствия с РТМ 31.3016 - 78, представлены в табл. П.3.1.

Таблица П.З.І

Угсл внутрен- него трения грунта основания	Глубина причала	Норматив- ный изги- бающий момент	Момент сопро- тивле- ния I м стенки	Масса І м стенки	Длина шцунта С
У осн, град	И	МН м/м	СМЗ	T	М
	II,5	1,71	8282	7,9	21,7
20	13,0	2,15	10200	9,5	23,7
	15,0	2,88	13744	II,8	26,3
	II,5	1,39	7114	6,7	20,7
	13,0	I,76	8282	7,8	22,7
25	15,0	2,35	10922	9,5	25,4
;	16,5	2,86	13744	II,2	27,4
	II,5	1,15	5940	5,8	20,2
	13,0	I,46	7114	6,7	22,1
30	15,0	I,96	9142	8,1	24,7
	16,5	2,39	II843	9,6	26,6
	18,0	2,94	I3744	10,9	28,6

Приложение 4

ПЕРЕЧЕНЬ НОРМАТИВНО - ТЕХНИЧЕСКИХ ДОКУМЕНТОВ

I.	Сний п-51-74	Гидротежнические сооружения морские. Основные положения проектирования.
2.	СНиЛ 2.06.04-82	Нагрузки и воздействия на гидротех- ническиз сооружения (волновне, ледовне и от судов).
3.	СНи∐ П-16-76	Основания гидротехнических сооружений
4.	ВСН 3 — 80 Минмору́лот	Инструкция по проектированию морских причальных сооружений.
5.	PTM 3I.3003 - 75	Руководство по проектированию глуос-ководных шпунтовых стенок с анкеров-кой на разных уровнях.
6.	PTM 31.3016 - 78	Указания по проектированию больверког с учетом перемещений и деформации: элементов.
7.	РД 31.33.02 - 81	Методические указания по определению ветровых и волновых условый при проектировании морских портов.
8.	PA 31.31.29 - 82	Руководство по проектированию илоце- ментных оснований и фундаментов пор- товых сооружений.
9.		Руководство по применению стальных канатов и анкерных устройств в кон- отрукциих зданий и сооружений. (НИИСК Госстроя СССР). М., Стройиздат, 1978 г.

содержание

		C	ıp.
I.	основные положения		I
2.	Нагрузки и воздействия		3
3.	Определение усилий		3
4.	Основные рекомендации по конструированию		4
5.	Сообенности технологии работ при возведении конструкций из сварного шлунта	•	9
•	Прилсжение I. Определение дополнительной составляющей эпюры боковего давления грунта от нагруженной фундаментной части		50
	Приложение 2. Основные характеристики сварного зетового шпунта	•	31
•	Приложение 3 (справочное). Ориентировочные данные по расходу шпунта	•	3 3
	Приложение 4. Перечень нормативно-технических документов	•	34