АНГИДРИД МАЛЕИНОВЫЙ ТЕХНИЧЕСКИЙ. МЕТОДЫ ИСПЫТАНИЙ

Часть III.

ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СВОБОДНОЙ КИСЛОТНОСТИ

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом (ТК \$4) «Красители, текстильно-вспомогательные вещества и органические полупродукты»
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 21.09.93 № 212
- 3 Настоящий стандарт подготовлен на основе применения аутентичного текста международного стандарта ИСО 1390/111 77 «Ангидрид малеиновый технический. Методы испытаний. Часть III. Потенциометрический метод определения свободной кислотности»
- 4 ВВЕДЕН ВПЕРВЫЕ

С Издательство стандартов, 1994

ГОСУЛАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНГИДРИД МАЛЕИНОВЫЙ ТЕХНИЧЕСКИЙ. МЕТОДЫ ИСПЫТАНИЙ

Часть III

Потенциометрический метод определения свободной кислотности

Maleic anhydride for industrial use Methods of test
Part III. Determination of free acidity
Potentiometric method

Дата введения 1995-01-01

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает потенциометрический метод определения свободной кислотности в техническом малеиновом ангидриде.

Стандарт применяют совместно с ГОСТ Р ИСО 1390/І.

Метод применяют для кислот с константой диссоциации не менее чем 10^{-3} .

Примечание — Фумаровая кислота и другие кислоты с константой диссоциации менее 10^{-3} указанным методом не определяются.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р ИСО 1390/I — 93 Ангидрид малеиновый технический. Методы испытаний. Часть І. Общие положения.

з сущность метода

Метод заключается в потенциометрическом титровании свободной кислотности в испытуемой пробе титрованием раствором триэтиламина в безводном метилэтилкетоне (бутаноне).

4 РЕАКТИВЫ

Для проведения анализа применяют только реактивы квалификации «чистый для анализа».

ГОСТ Р ИСО 1390/111-93

- 4.1 Ацетон
- 4.2 Малеиновая кислота [(СНСООН)2].
- 4.3 Триэтиламин $[(C_2H_5)_3N]$, не содержащий первичные и вторичные амины, раствор в метилэтилкетоне $(CH_3CH_2COOCH_3)$ (бутанон) молярной концентрации точно $c[(C_2H_5)_3N]=0,1$ моль/дм³. Предварительно титр раствора устанавливают по малеиновой кислоте, применяя методику, описанную в разделе 6.

Примечание — Метилэтилкетон (бутанон) необходимого качества может быть получен обработкой безводным хлористым кальцием, декантацией и перегонкой.

5 АППАРАТУРА

Обычная лабораторная аппаратура, а также

- 5.1. Бюретка вместимостью 10 см³ с ценой деления 0,02 см³ или с меньшей.
- 5.2 pH-метр, снабженный стеклянным измерительным электродом и каломельным электродом сравнения.

Насыщенный водный раствор хлористого калия в каломельном электроде может быть заменен насыщенным раствором хлористого калия в метаноле. Желательно, чтобы каломельный электрод был втулочного типа со стеклянным шлифом.

5 3 Электромагнитная мешалка.

6 ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 6.1 Массу испытуемой пробы не более 10 г, содержащую не более 0,150 г малеиновой кислоты, взвешивают с точностью до 0,01 г. Навеску переносят в сухой химический стакан вместимостью 150 см³ и растворяют в 75 см³ ацетона.
- 6.2 В раствор помещают стеклянный и каломельный электроды, перемешивают электромагнитной мешалкой, прикрывают стакан, чтобы уменьшить испарение, и титруют потенциометрически раствором триэтиламина из бюретки. Вблизи точки эквивалентности раствор триэтиламина прибавляют порциями по 0,02 см³, отмечая каждый раз соответствующий потенциал.
- 6.3 Если навеска содержит менее 0,006 г малеиновой кислоты, приращения потенциала Δ_1 , Δ_0 и Δ_2 будут соответствовать наибольшим изменениям потенциала в начале титрования. Поэтому, если израсходованный объем раствора триэтиламина меньше 0,5 см³, добавляют по крайней мере 0,010 г малеиновой кислоты и повторяют определение.

7 ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1 Подсчитывают приращения потенциала, соответствующие прибавлению 0,02 см³ раствора триэтиламина. Оставляют три небольших приращения Δ_1 , Δ_0 и Δ_2 , где Δ_0 — наибольшее приращение, Δ_1 — предыдущее и Δ_2 — следующее за Δ_0 приращения. Рассчитывают объем V_1 в кубических сантиметрах раствора триэтиламина по формуле

$$V_1 = V_0 + \frac{0.02 \cdot (\Delta_0 - \Delta_1)}{2\Delta_0 - (\Delta_1 + \Delta_2)},$$

где V_0 — объем раствора триэтиламина, добавленный для получения потенциала между Δ_0 и Δ_1 , см³.

Примечание — Предлагаемый расчет объема раствора триэтиламина является неточным. Однако разница между теоретическими значениями и значениями, полученными описанным способом, незначительна, так как совсем незначительный объем титранта нужно добавить для достижения точки эквывалентности. Этот метод предпочтителен из-за своей простоты.

7.2 Массовую долю свободной кислотности A в пересчете на малеиновую кислоту $\{(CHCOOH)_2\}$ в процентах рассчитывают по формуле

$$A = \frac{(11.6 \cdot V_1) - m_1}{m_0 \cdot 10},$$

где m_0 — масса навески, г;

т - масса добавленной маленновой инслоты, г;

 V_1 — объем, определяемый по п. 6.1, см³.

УДК 661.73:547.584:543.06:006.354

Л29

Ключевые слова: ангидрид малеиновый, методы испытаний, потенциометрический метод, свободная кислотность, малеиновая кислота, триэтиламин

OKCTY 2409

Редактор Т. С. Шеко Технический редактор О. Н. Никитина Корректор А. В. Прокофьева

Сдано в наб. 25.11.93. Подп. в печ. 13.01.94. Усл. п. л. 0,35. Усл. кр. отт. 0,36. Уч.-изд. л. 0,27. Тир. 266 экз. С 963.