ПОДШИПНИКИ СКОЛЬЖЕНИЯ. УСТАЛОСТЬ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Испытания полувкладышей из металлического многослойного подшипникового материала

Издание официальное

Предисловие

1 РАЗРАБОТАН Российской Федерацией

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (Протокол № 15 от 28 мая 1999 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Беларуси
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Талжикистан	Таджиктосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 7905-4—95 «Подшипники скольжения. Усталость подшипников скольжения. Часть 4: Испытания полувкладыщей из металлического многослойного подшипникового материала»

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 14 декабря 1999 г. № 510-ст межгосударственный стандарт ГОСТ ИСО 7905-4—99 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2000

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ПОДШИПНИКИ СКОЛЬЖЕНИЯ. УСТАЛОСТЬ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ

Испытания полувкладышей из металлического многослойного подшипникового материала

Plain bearings. Bearing fatigue.
Tests on haef-bearings of a metallic multilayer bearing material

Дата введения 2000—07—01

1 Область применения

Настоящий стандарт устанавливает метод определения предела выносливости при усталости полувкладыщей из многослойных подшипниковых материалов.

2 Нормативные ссылки

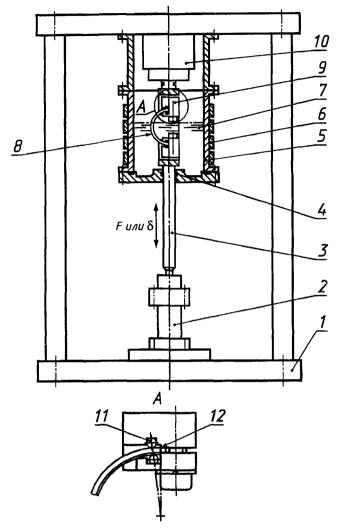
В настоящем стандарте использована ссылка на ГОСТ ИСО 7905-3—99. Подшипники скольжения. Усталость подшипников скольжения. Испытание гладких полос из металлического многослойного подшипникового материала

3 Образцы для испытания

В качестве образцов для испытания используют готовые полувкладыщи. Как результат условий нагружения главные напряжения локализуются в верхней части подшипника. Не допускаются механические повреждения поверхности образца или повреждения вследствие коррозии до и в процессе испытания.

Преимуществом этого метода испытания является наличие остаточных напряжений, связанных с процессом производства подшипников.

4 Методы испытаний


Схема испытания приведена на рисунке 1.

Образцы крепят за один конец, а через свободный конец передают нагрузку, контролируемую по усилию или перемещению, приложенных радиально с эксцентриситетом относительно линии разъема. Нагрузка должна изменяться от растяжения к сжатию в пределах рабочей поверхности. Для оценки зависимости от средних напряжений дополнительно могут быть приложены предварительные напряжения растяжения или сжатия. Испытательное оборудование располагают в камере, содержащей смазку при заданной температуре с точностью ±2 °C. Испытания могут быть проведены альтернативно в среде воздуха при заданной температуре с точностью ±2 °C.

Напряжения при изгибе измеряют с помощью тензодатчика на основе подшипника в верхней его части (средней периферической длине). Требуемое напряжение в антифрикционном слое может быть рассчитано, если известны толщины стальной основы и антифрикционного слоя и модули Юнга.

Альтернативно радиальное усилие в закрепленном конце может быть измерено с помощью камеры нагрузки или рассчитано по теории консольной балки, а нагружение в антифрикционном слое рассчитано в соответствии с приложением А.

Эти значения критически зависят от толщин стальной основы и антифрикционного слоя, которые определяются с помощью микрошлифов после испытаний. Частота испытания должна

1 — корпус;
 2 — гидравлический цилиндр;
 3 — передаточный вал;
 4 — уплотнение;
 5 — камера для образда;
 6 — лента нагревателя;
 7 — испытательная жидкость;
 8 — полувкладыщи;
 9 — навесное зажимное устройство;
 10 — камера нагрузки;
 11 — ролики на радиальной линии;
 12 — поворотное зажимное устройство

Рисунок 1 — Схема испытания

составлять 50—80 Гц. Обнаружение трещины осуществляют с помощью метода проникающих красителей или с помощью микроскопа.

Амплитуда нагружения контролируется усилием $F = \overline{F} + F_A$ sin (ω t), где \overline{F} — среднее усилие, F_A — амплитуда усилия, ω — угловая скорость, t— время, или перемещением $\delta = \overline{\delta} + \delta_A \cdot \sin{(\omega \cdot t)}$, где $\overline{\delta}$ — среднее перемещение, δ_A — амплитуда перемещения. Для обнаружения возникновения трещины в более толстых слоях может быть использована обработка данных тензодатчиков, чтобы определить начало разрушения (ГОСТ ИСО 7905-3).

5 Оценка и представление результатов

Напряжения предела выносливости должны быть представлены в форме кривых $\sigma_{\rm el}-N$ при предварительно определенной температуре (± 2 °C) относительно детального описания подшипни-

кового материала. Испытание для получения этой кривой прекращают при циклах нагружения 50×10^6 . Напряжение предела выносливости может быть оценено при заданном числе циклов, например 3×10^6 , 10×10^6 , 25×10^6 или 50×10^6 . Образец, не подвергшийся разрушению при усталостном испытании до заданного предела, указывают в отчете.

Вследствие разброса результатов испытания и статистического характера предела усталости рекомендуется полученные результаты оценивать на основе статистического метода.

Напряжения предела выносливости могут быть представлены также с помощью диаграммы Хейга, на которой амплитуду напряжений указывают относительно среднего напряжения.

Металлографическое исследование должно обеспечить детальное описание механизма разрушения, коррозионного повреждения и диффузии в результате термических эффектов.

ПРИЛОЖЕНИЕ А (обязательное)

ОЦЕНКА НАПРЯЖЕНИЙ

А.1 Система полувкладышей описана на рисунке А.1 через радиальный размер r_1 , толщину s_1 и связана с модулем Юнга $E_{2.0}=50\times 10^6$ МПа и номинальным напряжением $\sigma_{\text{ном}}$.

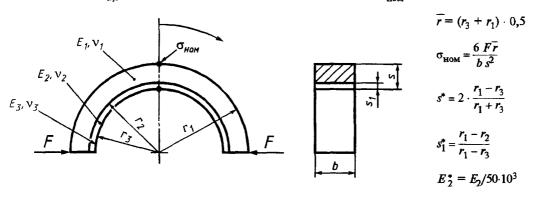


Рисунок А.1 — Система вкладыща

Оценка напряжений для двухслойного подшипника дана на рисунке А.2. Аппроксимация для напряжения в антифрикционном слое трехслойного подшипника также показана на рисунке А.2.

А.2 Ниже приведены условные обозначения:

 A_1 — коэффициент напряжения на основе подшилника;

 $a_{1,i}$ — 3 коэффициента на наружной стороне основы подшипника с i = 0, 1, 2;

 A_2 — коэффициент напряжения на поверхности антифрикционного слоя;

 $a_{2,i}$ — 3 коэффициента на поверхности антифрикционного слоя с i = 0, 1, 2;

b — ширина подшипника, мм;

 B_1 — коэффициент напряжения на основе подшилника;

 $b_{1,i}$ — 3 коэффициента на наружной стороне основы подшипника с i = 0, 1, 2;

В₂ — коэффициент напряжения на поверхности антифрикционного слоя;

 $b_{2,i}$ — 3 коэффициента на поверхности антифрикционного слоя с i = 0, 1, 2;

E — модуль Юнга, МПа;

 E^* — безразмерный модуль Юнга ($E^* = E_2/E_{2,0}$);

 E_1 — модуль Юнга, стальная основа подшипника, МПа ($E_1 = 210 \times 10^3$);

 E_2 — модуль Юнга, антифрикционный слой, Па;

 $E_{2,0}$ — модуль Юнга для рисунка A.2, МПа ($E_{2,0} = 50 \times 10^3$);

Е₃ — модуль Юнга, рабочий антифрикционный слой, Па;

F— радиальное усилие, H;

ГОСТ ИСО 7905-4-99

 r_1 — наружный радиус стальной основы подшипника, мм;

 r_2 — радиус поверхности раздела между основой подшипника и антифрикционным слоем, мм;

 r_2 — радиус рабочей поверхности (толщина рабочего антифрикционного слоя незначительна), мм;

s — общая толщина подшилника, мм;

s* — безразмерная общая толщина (см. рисунок A.1);

 s_1 — толіцина стальной основы, мм;

 s_1^* — безразмерная толіцина стальной основы (см. рисунок A.1);

t — время, с;

 σ — напряжение, Па;

 σ^* — безразмерное напряжение ($\sigma^* = \sigma/\sigma_{HOM}$);

σ _{el} — напряжение предела выносливости, Па;

 $\sigma_{\text{ном}}$ — номинальное напряжение, Па;

σ₁ — напряжение на наружной стороне основы подшипника, МПа;

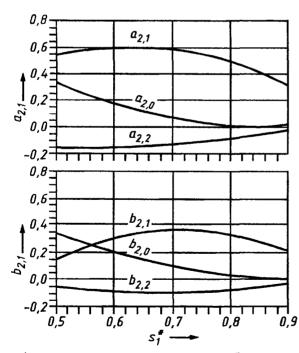
σ₁* — безразмерное напряжение в стальной основе подшипника;

σ₂ — напряжение на поверхности антифрикционного слоя, МПа;

 σ_2^* — безразмерное напряжение, поверхность антифрикционного слоя;

 σ_3 — напряжение в рабочем антифрикционном слое, Па;

 обезразмерное напряжение, рабочий антифрикционный слой;


 \bar{r} — средний радиус, мм:

v₁ — коэффициент Пуассона, стальная основа подшипника;

v₂ — коэффициент Пуассона, антифрикционный слой;

v₃ — коэффициент Пуассона, рабочий антифрикционный слой.

Рабочая поверхность (антифрикционный слой)

$$a_{2,0} = 1,8127 - 4,1812 \, s_1^* + 2,4186 \, s_1^{*2}$$

$$a_{2,1} = -0,9422 + 4,9216 \, s_1^* - 3,9069 \, s_1^{*2}$$

$$a_{2,2} = 0,1525 - 1,1544 \, s_1^* + 1,0703 \, s_1^{*2}$$

$$b_{2,0} = 1,5511 - 3,2821 \, s_1^* + 1,7309 \, s_1^{*2}$$

$$b_{2,1} = -1,9947 + 6,5920 \, s_1^* - 4,5933 \, s_1^{*2}$$

$$b_{2,2} = 0,6593 - 2,2550 \, s_1^* + 1,6647 \, s_1^{*2}$$

$$A_2 = a_{2,0} + a_{2,1} \, E_2^* + a_{2,2} \, E_2^*$$

$$B_2 = b_{2,0} + b_{2,1} \, E_2^* + b_{2,2} \, E_2^*$$

$$\sigma_2^* = A_2 + B_2 \, s^*$$

$$\sigma_2 = \sigma_2^* \, \sigma_{\text{BOM}}$$

Аппроксимация для напряжения в рабочем антифрикционном слое: $\sigma_3 = \sigma_2 \cdot E_3/E_2$

Рисунок А.2 — Оценка напряжений в двух- и трехслойных подшипниках

Основа подшипника

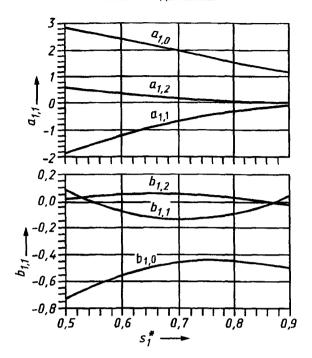
$$a_{1,0} = 5,3866 - 5,7096 \, s_1^* + 1,1765 \, s_1^{*2}$$

$$a_{1,1} = -7,1015 + 13,9625 \, s_1^* - 6,8190 \, s_1^{*2}$$

$$a_{1,2} = 2,6745 - 5,7995 \, s_1^* + 3,1475 \, s_1^{*2}$$

$$b_{1,0} = -2,6739 + 5,7506 \, s_1^* - 3,6978 \, s_1^{*2}$$

$$b_{1,1} = 2,2096 - 6,6150 \, s_1^* + 4,6682 \, s_1^{*2}$$


$$b_{1,2} = -0,5900 + 1,9231 \, s_1^* - 1,4286 \, s_1^{*2}$$

$$A_1 = a_{1,0} + a_{1,1} \, E_2^* + a_{1,2} \, E_2^{*2}$$

$$B_1 = b_{1,0} + b_{1,1} \, E_2^* + b_{1,2} \, E_2^{*2}$$

$$\sigma_1^* = A_1 + B_1 s^*$$

$$\sigma_1 = \sigma_1^* \, \sigma_{\text{HOM}}$$

Аппроксимация для напряжения в рабочем антифрикционном слое: $\sigma_3 = \sigma_2 \cdot E_3/E_2$ Рисунок А.2 — Оценка напряжений в двух- и трехслойных подпипниках (продолжение)

А.3 Пример

Приведенные данные для полувкладыша:

b = 30 mm;

 $E_1 = 210 \times 10^3 \text{ M}\Pi a;$

 $E_2 = 69 \times 10^3 \text{ M}\Pi a$;

 $\vec{E_3} = 22 \times 10^3 \text{ M}\Pi\text{a};$

 \vec{F} = 100 H;

 $r_1 = 51,50 \text{ MM};$

 $r_1 - 31,50 \text{ MM};$ $r_2 = 49,10 \text{ MM};$ $r_3 = 48.52$

Предполагается, что поскольку рабочий антифрикционный слой Pb Sn 11 относительно тонкий (0,02 мм), то он не влияет на напряжения в других слоях.

А.3.1 Расчет связанных размеров (см. рисунок А.1):

$$s* = 0.06;$$

$$s_1^* = 0.8;$$

$$E^* = 1,38.$$

А.3.2 Расчет номинального напряжения (см. рисунок А.1):

$$\sigma_{\text{HOM}} = 111,1 \text{ M}\Pi \text{a}.$$

А.З.З Расчет или считывание коэффициентов а, b (см. рисунок А.2) Рабочая поверхность:

$$a_{2,0} = 0.016;$$

 $b_{2,0} = 0.033.$

$$a_{2,1} = 0,495;$$

 $b_{2,1} = 0,339.$

$$a_{2,2} = -0.086;$$

 $b_{2,2} = -0.079.$

Основа подшилника:

$$a_{1,0} = 1,572;$$

 $b_{1,0} = -0,440.$

$$a_{1,1} = -0,296;$$

 $b_{1,1} = -0,095.$

$$a_{1,2} = 0.049;$$

 $b_{1,2} = 0.034.$

А.3.4 Расчет коэффициентов А, В

Рабочая поверхность:

$$A_2 = 0,535;$$

 $B_2 = 0,350.$

ГОСТ ИСО 7905-4-99

Основа подшипника:

 $A_1 = 1,257;$ $B_1 = -0,506.$

А.3.5 Расчет безразмерного напряжения

Рабочая поверхность: $\sigma_2^* = 0,556$. Основа подшилника: $\sigma_1^* = 1,227$.

А.3.6 Расчет действительного напряжения

Рабочая поверхность: $\sigma_2 = 61,8$ МПа. Основа подшилника: $\sigma_1 = 136,3$ МПа.

А.3.7 Анпроксимирование для напряжения в рабочем антифрикционном слое: $\sigma_3 = 19,7$ МПа.

УДК 621.822.5:620.179.111:006.354

MKC 21.100.10

Γ16

ОКП 41 8250

Ключевые слова: подшипники, подшипники скольжения, испытания, усталостные испытания

Редактор Р.Г. Говердовская Технический редактор О.Н. Власова Корректор В.Е. Варенцова. Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 28.12.99. Подписано в печать 03.02.2000. Усл.печ.л. 0,93. Уч.-изд.л. 0,80. Тираж 207 экз. С 4301. Зак. 85.