

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПОЛИВИНИЛБУТИРАЛЬ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 9439-85

Издание официальное

РАЗРАБОТАН Министерством химической промышленности ИСПОЛНИТЕЛИ

В. Е. Бадалян, В. М. Южин, М. И. Матевосян, О. К. Барсегян, Л. Г. Мазова ВНЕСЕН Министерством химической промышленности

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 20 марта 1985 г. № 627

ГОСУДАРСТВЕННЫЙ CTAHAAPT СОЮЗА CCP

ПОЛИВИНИЛБУТИРАЛЬ

9439 - 85Технические условия

Polyvinylbutyral. Specifications

Взамен **FOCT 9439--73**

FOCT

OKII 22 1512

Постановлением Государственного момитета СССР по стандартам от 20 марта 1985 г. № 627 срок действия установлен

c 01.01.86 до 01.01.91

Несоблюдание стандарта преследуется по закону

Настоящий стандарт распространяется на поливинилбутираль, представляющий собой продукт взаимодействия поливинилового спирта и масляного альдегида.

Показатели технического уровня, установленные настоящим стандартом, предусмотрены для высшей и первой категорий качества.

1. MAPKH

- 1.1. Поливинилбутираль в зависимости от назначения выпускают указанных ниже марок:
- ПП пленочный поливочный для изготовления поливинилбутиральной клеящей пленки методом полива:

ПШ-1 и ПШ-2 -- пленочные шлицевые для изготовления поливинилбутиральной клеящей пленки методом экструзии;

ЛА и ЛБ — для изготовления грунтов и лаков;

КА и КБ — для изготовления клеев;

НК — для напыления, изготовления клеев и пластмассы.

Поливинилбутираль марок ПШ-1, ЛА, ЛБ, ҚА, ҚБ выпускают высщей и первой категории качества, ПП, ПШ-2 и НҚ — первой категории качества.

Высшая категория качества поливинилбутираля соответствует высшему сорту, а первая категория качества — первому сорту.

1.2. Условное обозначение поливинилбутираля состоит из краткого наименования продукта — ПВБ, марки, сорта и обозначения настоящего стандарта.

Пример условного обозначения подивинилбутираля марки КА высшего сорта

ПВБ КА высший сорт ГОСТ 9439—85.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Поливинилбутираль должен изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 2.2. По показателям качества поливинилбутираль должен соответствовать нормам и требованиям, указанным в табл. 1.

Таблица 1

		Норма для марки							
	K	Высшая категория качества Первая категори						я качества	
Наименование показателя		Высш сорт					Первый	сорт	
	1-1111	ЛА	316	AR AR ULL				ПШ-2	
1. Внешний вид			орош				га без ений	Порошок белого цвета. Допускаются включения на одной пластине размером 300×300 мм не более 2 шт. размером до 0,7 мм	
2. Массовая доля во- ды, %, не более 3. Массовая доля аце- татных групп в пересче-	1,5	2,0	2,0	2,0	3,0	3,0	3,0—8,0 2,0		
те на сухой продукт, %, не более	1.5	2,0	2,0	2,0	3,0	3,0	3,0	2,0	

		Нор	ма для	марки				
	Кате	шая гория ества	Пер	вая кате Качеств				
Наименование показателя		ений орт	й Первый сорт			Метод нспытания		
	KA	ΚБ	ĶА	ΚБ	нқ			
1. Внешний вид	п	орошок постор	белого онних	По п. 5.2				
2. Массовая доля во- ды, %, не более 3. Массовая доля аце- татных групп в пересче-	2,0	2,0	3,0	3,0	3,0	По ГОСТ 24629—81 и по п. 5.3		
те на сухой продукт, %, не более		2,0	3,0	3,0	3,0	По п. 5.4		

				Норма	для ма	рки				
	Выс	шая кат Качеств		Первая категория качества Первый сорт						
Наименование показателя	В	ысший с	орт							
	пш-1	ЛА	ЛБ	пш-1	ЛА	ЛБ	пп	пш-2		
4. Массовая доля бутиральных групп в пересчете на сухой продукт, %	45—48	45—48	4548	4448	4348	43—48	44—48	32-35		
5. Массовая доля клор- иона, %, не более	-	0,002	0,002	_	0,002	0,002	_			
6. Кислотное число мг КОН на 1 г сухого про- дукта, не более	0,10	0,10	0,10	0,12	0,12	0,12	0,12	0,10		
7. Условная вязкость при 20°С, с	14—26	8—18	19—30	14—26	818	19—30	5—13	_		

Продолжение табл. 1

		Hoj				
	Ka'	ысшая гегория чества	п	ервая кат качесті		
Наименование показателя	Выс	ший сорт		Первый	сорт	Метод испытания
	ĶА	ΚБ	KA	ΚБ	нқ	
4. Массовая доля бу- тиральных групп в пере- счете на сухой продукт, %]	45—48	43—48	4348	43—48	По п. 5.5
5. Массовая доля хлор- нона, %, не более	0,002	0,002	0,002	0,002	_	По п. 5.6
6. Кислотное число, мг/КОН на 1 г сухого продукта, не более		0,10	0,12	0,12	0,12	По п. 5.7
7. Условная вязкость при 20°C, с	3148	49—105	31—48	49—105	31—105	По ГОСТ 8420—74 и по п. 5.8

					11 p	JOONSILE ————————————————————————————————————	ние та	On. 1			
				Норма д	ля ма	рки					
	Высшая кач	Kater ectba	ория	Пер	Первая категория качества						
Наименование показателя	Высш	нй сор	УТ	Первый сорт							
	ПШ-1	ЛА	лв	ПШ-1	ЛА	ЛБ	пп	пш-2			
8. Растворимость: в этиловом спирте		Пол	ная	_	Г	Іолная	1	_			
спиртобензольной смеси в водноспиртовой	Полная	_	-	Полная	_	-	Пол-	_			
смеси в смеси растворите-	_	_				_	-	Пол- ная			
лей (этиловый спирт- бутиловый спирт- ацетон)		Пол	ная		Пол	ная	_	_			
9. Зернистость: остаток на сите с сеткой № 0355К ГОСТ 3584—73, не более	Отсут- ствует		-	Отсут- ствует				_			

						poodinioni radii. 1
	l	Hop	ма для	марки		
	Kar	сшая гория ества	Пед	вая ка1 Качест		Метод
Наименование показателя	Высш	ий сорт	I	Тервый	сорт	испытания
	ĶΑ	ΚВ	KA	ĶΒ	нқ	
8. Растворимость: в этиловом спирте спиртобензольной		· · · · · · · · · · · · · · · · · · ·	Полна	По п. 5.9		
смеси в водноспиртовой	_	-	_	-	-	
смесн в смеси растворите- лей (этиловый спирт- бутиловый спирт-	_	_	_		-	
ацетон) 9. Зернистость, % остаток на сите с сеткой № 01К ГОСТ	_			_	-	
3584—73		-	-	l —	60—90	По п. 5.10

						пре	оожжение	ruon. i
				ŀ	Іорма д	qsm rr	KIR	
		Высш категој качест	RHC		Перв	ая кате	гория каче	ства
Наименование показателя	Bı	ысший	сорт			Перв	ый сорт	
	ПШ-1	ЛА	ЛБ	пш-1	ЛА	ЛБ	пп	ПШ-2
остаток на сите с сеткой № 1К ГОСТ 3584—73		_		_		_		Отсут-
остаток на сите с сеткой № 2К ГОСТ 3584—73		Отс	-	ı	Отс ству		_	_
 Коэффициент поглощения света на толщину 1 мм, %, не более Коэффициент светопропускания однослойного триплекса, 	1,2	_	_	1,4	 	_	1,35	1,4
%, не менее 12. Коэффициент рас-	-	_	-	85	-	_		_
сеяния света, кд/лм× ×мм, не более	_		_	_	_ }	_	5,0 - 10-4	3,5 · 10-4

Продолжение табл. 1

		Нор	ма для	марки				
	кате	сшая горня ества	Пер	вая кат Качеств		Метод		
Наименование показателя	Высш	ій сорт	r	іервый с	орт	испытания		
	KA	ΚБ	ĶА	ĶБ	нк			
остаток на сите с сеткой № 05К ГОСТ 3584—73, не более	_				1	По п 5.10		
остаток на сите с сеткой № 2К ГОСТ 3584—73 10. Коэффициент погло-		Отсу	гствует		-			
щения света на тол- щину 1 мм, %, не более 11. Коэффициент свето- пропускания одно-	! —	_	_	_		По п. 5.11.4		
слойного триплекса, %, не менее 12. Коэффициент рассе-	 	_	_	_	-	По п. 5.11.3		
яния света, кд/лм× ×мм, не более	_	_	-		_	По п. 5.11.5		

я яя а сорт	Пер				чества				
<u> </u>		Первы	.# ^^=						
			Первый сорт						
ЛБ	пш-1	ЛА	ЛБ	пп	ПШ-2				
i i	1	_		0,6	0, <u>5</u> - 0,40,8				
	ĺ	ль пш-1 — 0,6 — 0,4—1,2	0,6	0,6					

Продолжение табл. 1

		Hop	якд вм	марки				
	Kate	сшая видотя ества	Пер	вая кат качесті				
Наименование показателя	Высш	Высший сорт Первый сорт		Метод испытания				
	KA	ΚБ	KA	ΚВ	нқ			
13. Насыщенность цве- та, сатрон/мм, не более,								
до прогрева	_		_	l —		По п. 5.11.6		
после прогрева	_	_	—		 	По п. 5.11.7		
14. Показатель текуче- сти расплава, r/10 мин 15. Прозрачность рас-		_			-	По п. 5.12		
твора поливинилбутира- ля совмещенного с баке- литовым лаком, см, не менее	16	16	15	15	_	По п. 5.13		

Примечания:

- 1. По согласованию с потребителем допускается изготовлять марки ПШ-1 первого сорта с условной вязкостью 50 с.
- 2. По требованию потребителя изготовляют поливинилбутираль марки КБ с вязкостью не более 90 с.
- 3. Норма по показателю растворимость в смеси этилового-бутилового спирта ацетон является факультативной до 01.01.87 г. Определение обязательное для поливинилбутираля, предназначенного для фосфатирующих грунтовок.
- 4. Марку ПІІІ-1 высшего сорта для поливинилбутиральной пленки Б-10 изготовляют с показателем насыщенность цвета до прогрева не более 0,25 сатрон.
- 5. Допускается до 01.01.88 г. выпускать марку ПШ-2 с количеством включений не более 5 шт.
- 2.3. Поливинилбутираль, предназначенный для изготовления фосфатирующих грунтюв, изготовляют с условной вязкостью 8—14 с для марки ЛА и 20—28 с для марки ЛБ.
- 2.4. Поливинилбутираль марки НК, предназначенный для изготовления пластмассы ТПФ-97, изготовляют с условной вязкостью не более 80 с и с 70—85%-ным остатком на сите с сеткой № 01 К.
- 2.5. В зависимости от марок поливинилбутираля коды ОКП и КЧ по Общесоюзному классификатору промышленной и сельско-козяйственной продукции должны соответствовать указанным в табл. 2.

Таблица 2

Марка	Код ОКП	Кл
марка ПП марка ПШ-1 Высший сорт Первый сорт марка ПШ-2 марка ЛА	22 1512 0500 22 1512 0600 22 1512 0601 22 1512 0602 22 1512 0700 22 1512 1000	09 06 05 04 03
Высший сорт Первый сорт марка ЛБ Высший сорт Первый сорт марка КА Высший сорт Первый сорт марка КБ	22 1512 1001 22 1512 1002 22 1512 1100 22 1512 1101 22 1512 1102 22 1512 0100 22 1512 0101 22 1512 0102 22 1512 0200	08 07 06 05 04 10 09 08
Высший сорт Первый сорт марка НК	22 1512 0201 22 1512 0202 22 1512 0300	06 05 04

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Поливинилбутираль в обычном агрегатном состоянии нетоксичен, горюч. Пыль поливинилбутираля с воздухом образует взрывоопасную смесь. Поливинилбутираль с размером частиц менее 15 мкм, попадая в дыхательные пути, может вызвать слабовыраженный, вялотекущий пневмокониотический процесс.

Температура воспламенения аэрогеля 183°C, температура самовоспламенения аэрогеля 375°C, температура самовоспламене-

ния аэровзвеси 395°C.

3.2. Нижний концентрационный предел воспламенения аэровзвеси поливинилбутираля марок ПП, ПШ-1, ЛА и ЛБ— 35.0 г/м^3 , марок КА, КБ и НК— 37.0 г/м^3 .

В зависимости от степени полимеризации поливинилбутираля значения показателей пожаровэрывоопасности колеблются в пределах:

максимальное давление взрыва, кПа — 580—890,

максимальная скорость нарастания давления при взрыве, к $\Pi a \cdot c^{-1} - 13300 - 14700$,

значение минимальной энергии зажигания в зависимости от дисперсности аэровзвеси составляет 10—88 мДж.

3.3. Средства пожаротушения: распыленная вода и воздушно-механическая пена.

3.4. При переработке поливинилбутираля с нагреванием до 180—200°С выделяется парогазовая смесь продуктов термоокислительной деструкции, содержащая масляную кислоту, масляный альдегид, окись углерода и неидентифицированные предельные и непредельные углеводороды.

Вдыхание парогазовой смеси при концентрации в ней вредных веществ выше допустимой нормы может вызвать острые и хрони-

ческие профессиональные интоксикации.

Однократное отравление большими концентрациями парогазовой смеси приводит к накоплению в крови карбоксигемоглобина, расстройствам кровообращения, раздражению дыхательных путей и слизистых оболочек глаз, отеку легких и поражениям печени и почек.

Длительное вдыхание парогазовой смеси, содержащей 130—210 мг/м³ масляного альдегида, 11—29 мг/м³ окиси углерода, 11—25 мг/м³ непредельных углеводородов и 27—31 мг/м³ масляной кислоты приводит к накоплению в крови карбоксигемоглобина, функциональным нарушениям нервной системы, раздражению слизистых оболочек дыхательных путей и воспалительным процессам в легких.

3.5. Для предотвращения профессиональных интоксикаций при переработке поливинилбутираля производственные помещения должны быть оснащены системой приточно-вытяжной вентиляции (ГОСТ 12.4.021—75), а участки, на которых проводится

нагрев материала, еще местным отсосом.

Система вентиляции должна обеспечивать такую чистоту воздуха рабочей зоны производственных помещений, чтобы концентрация окиси углерода не превышала предельно допустимую концентрацию. Сумма отношений реальных концентраций масляного альдегида и масляной кислоты при совместном присутствии в воздухе к их предельно допустимым концентрациям не должна превышать единицу.

Предельно допустимая концентрация в воздухе рабочей зоны

производственных помещений и класс опасности:

масляной кислоты, мг/м 3 — 10 (3-й класс опасности); масляного альдегида, мг/м 3 — 5 (3-й класс опасности); окиси углерода, мг/м 3 — 20 (4-й класс опасности).

3.6. Из-за пожаро- и взрывоопасности, а также опасности пневмокониотического действия следует избегать дробления поливинилбутираля.

При неизбежности дробления оборудование должно быть заземлено, а электротехнические устройства должны отвечать требованиям класса B-11a по ПУЭ.

3.7. При производстве, переработке и использовании поливинилбутираля необходимо выполнять технологические и санитарнотехнические требования, которые обеспечат создание безопасных условий труда, а также профилактику профессиональных отравлений и заболеваний.

3.8. Производство должно быть обеспечено техническими средствами контроля состояния воздушной среды.

4. ПРАВИЛА ПРИЕМКИ

4.1. Поливинилбутираль принимают партиями. За партию поливинилбутираля принимают количество продукта не менее ливинилоутираля принимают количество продукта не менее 200 кг, однородного по качеству и одной марки, полученное от одной операции ацеталирования, сопровождаемое одним документом о качестве. Документ должен содержать:

наименование и товарный знак предприятия-изготовителя;
наименование и марку продукта;

номер партии; массу нетто и брутто;

дату изготовления;

результат проведенных испытаний и подтверждение о соответствии требованиям настоящего стандарта;

обозначение настоящего стандарта.

4.2. Для проверки качества поступившей партии поливинилбу-тираля отбирают 10% упаковочных единиц продукции от партии, но не менее чем три упаковочные единицы, если партия содержит менее 30 упакованных единиц.

4.3. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему должны проводиться повторные испытания на удвоенном количестве упакованных единиц, взятых от той же партии.

Результат повторных испытаний распространяется на всю

партию.

4.4. Норма по показателю массовая доля хлор-иона определяется в поливинилбутирале, предназначенном для изготовления клеев марок БФ-2, БФ-4, лаков марок ВЛ-02, ВЛ-08, а также по требованию потребителя.

4.5. Нормы по показателям прозрачность раствора поливинилбутираля, совмещенного с бакелитовым лаком и показатель текучести расплава, определяются по согласованию с потребителем.

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Из отобранных по п. 4.2 упакованных единиц продукции отбирают пробы погружением щупа по ГОСТ 12036—66 до дна тары. Отобранные точечные пробы объединяют, тщательно перемешивают и квартованием доводят массу средней пробы до 0,5 кг.

Среднюю пробу помещают в чистую сухую, плотно закрываемую тару, на которую наклеивают этикетку с обозначениями: наименования предприятия-изготовителя; наименования продукта и

марки; номера партии; даты отбора пробы.

5.2. Внешний вид поливинилбутираля, за исключением марки ПШ-2, проверяют визуально. Чистоту поливинилбутираля марки ПШ-2 определяют на трех образцах пленки, изготовленных как указано в п. 5.11.2.2, с помощью лупы (ГОСТ 25706—83) с 10 челичением. Включения отмечают карандашом и подсчитывают.

5.3. Определение массовой доли воды

Массовую долю воды определяют методом, основанным на электрометрическом титровании реактивом Фишера (ГОСТ 24629—81) или методом определения массовой доли летучих веществ по ГОСТ 17557—80. При разногласиях используется метод по ГОСТ 24629—81, п. 3.1.

5.4. Определение массовой доли ацетатных групп в паресчете на сухой продукт

5.4.1. **Сущно**сть метода

Метод основан на щелочном омылении ацетатных групп с последующим титрованием избытка щелочи соляной кислотой.

5.4.2. Приборы, посуда и реактивы

Весы лабораторные любой марки второго класса по ГОСТ 24104—80.

Баня водяная или песочная или колбонагреватель.

Холодильник XIII-1—300—29/32 или XIIT-1—400—29/32 по ГОСТ 25336—82.

Колба круглодонная К-1—250—29/32 ТХС или коническая Кн-1—250—29/32 ТХС по ГОСТ 25336—82.

Цилиндр 1—100 по ГОСТ 1770—74.

Пипетка 2-2-5 по ГОСТ 20292-74.

Бюретка 1-2-25-0,05 по ГОСТ 20292-74.

Натрия гидроокись по ГОСТ 4328—77, ч.д.а., 0,5 моль/дм³ спиртовой раствор.

Кислота соляная по ГОСТ 3118—77, 0,1 моль/дм³ раствор.

Спирт этиловый технический по ГОСТ 17299—78, марка А или спирт этиловый ректификованный по ГОСТ 18300—72, высший сорт.

Фенолфталеин (индикатор) по ГОСТ 5850—72, 1%-ный спирто-

вой раствор.

Вода дистиллированная по ГОСТ 6709—72.

5.4.3. Проведение испытания

В колбу наливают 100 см³ этилового спирта, а при испытании поливинилбутираля марки ПШ-2 100 см³ спиртоводной смеси, взятой в соотношении 85:15 по объему, и вносят (1,5±0,1) г поливинилбутираля, взвешенного с погрешностью не более 0,0002 г.

Приливают пипеткой 5 см³ спиртового раствора гидроокиси натрия, подсоединяют колбу к обратному холодильнику и кипятят в течение 2 ч.

Содержимое колбы охлаждают до температуры $(20\pm5)^{\circ}$ С и титруют раствором соляной кислоты в присутствии индикатора фенолфталеина. Параллельно в тех же условиях и с теми же количествами реактивов проводят контрольное определение.

5.4.4. Обработка результатов

Массовую долю ацетатных групп (X_1) в процентах в пересчете на сухую навеску вычисляют по формуле

$$X_1 = \frac{(V-V_1) \cdot 0.0059 \cdot 100 \cdot 100}{m \cdot (100-X)}$$
,

где V — объем точно 0,1 моль/дм³ раствора соляной кислоты, израсходованный на титрование контрольной пробы, см³;

 V_1 — объем точно 0,1 моль/дм³ раствора соляной кислоты, израсходованный на титрование испытуемой пробы, см³;

т — навеска поливинилбутираля, г;

 X — массовая доля воды в испытуемом поливинилбутирале, %;

0,0059 — масса ацетатных групп, соответствующая 1 см³ точно 0,1 моль/дм³ раствора соляной кислоты, г.

За результат испытания принимают среднее арифметическое двух определений, допускаемое расхождение между которыми не должно превышать 0.2% при доверительной вероятности P'=0.95.

5.5. Определение массовой доли бутиральных групп в пересчете на сухой продукт

5.5.1. Сущность метода

Метод основан на гидролизе поливинилбутираля с одновременным оксимированием выделяющегося масляного альдегида солянокислым гидроксиламином. Соляная кислота, образующаяся в результате оксимирования, титруется раствором щелочи.

5.5.2. Приборы, посуда и реактивы

Иономер ЭВ-74 или рН-метр любого типа с погрешностью измерения не более 0,05 рН.

Мешалка магнитная любого типа.

Весы лабораторные любой марки второго класса по ГОСТ 24104—80.

Колбонагреватель или баня песочная.

Электрод стеклянный.

Электрод хлорсеребряный.

Колба коническая Кн-1—150—29/32 ТХС по ГОСТ 25336—82. Холодильник ХПТ-1—400—29/32 или XIII-1—300—29/32 по ГОСТ 25336—82.

Стакан Н-1-400 ТХС по ГОСТ 25336-82.

Цилиндры 1—25, 1—50 и 1—100 по ГОСТ 1770—74. Бюретка 1—2—25—0,05 по ГОСТ 20292—74.

Натрия гидроокись по ГОСТ 4328—77, ч.д.а., 0.5 моль/дм³ раствор.

Гидроксиламин солянокислый по ГОСТ 5456—79, 7%-ный

раствор.

Спирт этиловый технический по ГОСТ 17299 -78, марка А или спирт этиловый ректификованный по ГОСТ 18300-72, высший сорт.

Вода дистиллированная по ГОСТ 6709-72.

Метиловый оранжевый (индикатор), 0,1%-ный раствор.

5.5.3. Проведение испытания

В колбу наливают 50 см3 этилового спирта и вносят $(1,7\pm0,2)$ г поливинилбутираля, взвещенного с погрешностью не более 0,0002 г, затем приливают 25 см³ раствора солянокислого гидроксиламина. Колбу подсоединяют к обратному холодильнику и нагревают при слабом кипении до получения прозрачного раствора, после этого раствор интенсивно кипятят еще 2,5 ч. Через верх холодильника прибавляют 100 см³ дистиллированной воды и кипятят еще 5—10 мин. Содержимое колбы охлаждают до (20±5)°С и титруют щелочью по методу А или Б.

Параллельно в тех же условиях ставят контрольную пробу.

А. Потенциометрический метод

Содержимое колбы переносят в стакан; колбу ополаскивают дистиллированной водой, объем раствора в стакане доводят до 250 cm³.

В контрольный раствор погружают стеклянный и хлорсеребряный электроды и при включенной мещалке измеряют вели-

чину рН.

После этого электрод ополаскивают водой и погружают в стакан с испытуемым раствором, включают мешалку и титруют из бюретки раствором щелочи по каплям до величины рН, равной величине рН в контрольной пробе и отмечают количество щелочи, израсходованное на титрование.

Б. Титриметрический метод

К контрольному раствору добавляют 2-3 капли метилового оранжевого и титруют раствором гидроокиси натрия до желтооранжевой окраски. В аналогичных условиях титруют раствор испытуемой пробы до окраски контрольного раствора.

5.5.4. Обработка резильтатов

Массовую долю бутиральных групп (X_1) в процентах в пересчете на сухую навеску вычисляют по формуле

$$X_2 = \frac{(V_1 - V_0) \cdot 0.044 \cdot 100 \cdot 100}{m \cdot (100 - X)},$$

где V_1 — объем 0,5 моль/дм³ раствора гидроокиси натрия, израсходованный на титрование испатуемой пробы, см³;

 V_0 — объем 0,5 моль/дм 3 раствора гидроокиси натрия, израсходованный на титрование контрольной пробы, см 3 .

В случае потенциометрического метода определения $V_0 = 0$.

m — навеска поливинилбутираля, г;

X — массовая доля воды в испытуемом поливинилбутирале, %;
 0,044 — масса бутиральных групп, соответствующая 1 см³ точно
 0,5 моль/дм³ раствора гидроокиси натрия, г.

За результат испытания принимают среднее арифметическое двух определений, допускаемое расхождение между которыми не должно превышать 1% при доверительной вероятности P'=0.95.

5.6. Определение массовой доли хлор-иона

5.6.1. Сущность метода

Метод основан на экстракции хлора из поливинилбутираля водным раствором щелочи с последующим потенциометрическим титрованием хлора азотнокислым серебром.

5.6.2. Приборы, посуда и реактивы

Иономер ЭВ-74 или рН-метр любого типа с погрешностью измерения не более 0,05 рН.

Мешалка магнитная любого типа.

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104—80.

Баня песочная или колбонагреватель.

Электроплитка.

Электрод сульфидсеребряный.

Ключ соединительный, заполненный насыщенным раствором азотнокислого калия.

Стакан Н-1-250 ТХС по ГОСТ 25336-82.

Бюретка 1-1-1-0,01 или 6-22 по ГОСТ 20292-74.

Холодильник XПТ-1—400—29/32 или XШ-1—300—29/32 по ГОСТ 25336—82.

Воронка В-56-80 ХС по ГОСТ 25336-82.

Цилиндры 1—10; 1—50 и 1—100 по ГОСТ 1770—74.

Колба круглодонная К-1—100—29/32 ТХС или коническая Кн-1—250—29/32 ТХС по ГОСТ 25336—82.

Натрия гидроокись по ГОСТ 11078—78, ч.д.а., 0,05 моль/дм³

раствор.

Серебро азотнокислое по ГОСТ 1277—75, ч.д.а., 0,01 моль/дм³ раствор.

Кислота уксусная ледяная по ГОСТ 61-75.

Қалий азотнокислый по ГОСТ 4217—77, ч.д.а., насыщенный раствор.

Спирт этиловый технический по ГОСТ 17299-78.

Вода дистиллированная по ГОСТ 6709-72.

5.6.3. Проведение испытания

Навеску поливинилбутираля массой (4,8±0,2) г, взвещенную с погрешностью не более 0,01 г, осторожно, предотвращая образование комков, помещают в колбу, в которую предварительно наливают 40 см³ 0,05 моль/дм³ раствора гидроокиси натрия и 5 см³ этилового спирта. Колбу присоединяют к обратному холодильнику и интенсивно кипятят 30 мин. После охлаждения до 40—50°С раствор декантируют в стакан через фильтр из ваты, предварительно смоченной водой, промывают образец и фильтр 40 см³ теплой воды. Затем стакан ставят на плитку и упаривают до объема 10 см³. К оставщемуся раствору приливают 100 см³ ледяной уксусной кислоты и ставят стакан на магнитную мещалку.

В раствор помещают индикаторный ионоселективный электрод и конец соединительного ключа. Другой конец соединительного ключа и хлорсеребряный электрод сравнения опускают в стакач с насыщенным раствором азотнокислого калия. Индикаторный электрод и электрод сравнения присоединяют к иономеру ЭВ-74 (или рН-метру). После установления равновесия, которое наступает примерно через 5 мин, приступают к титрованию. Титрование проводят по каплям 0,01 моль/дм³ раствором азотнокислого серебра, каждый раз после достижения состояния равновесия, отмечая значение потенциала. Титрование продолжают до скачка потенциала, который наступает от одной капли раствора титранта в области 250—400 мВ.

Параллельно проводят контрольный опыт, который состоит в следующем: 40 см³ 0,05 моль/дм³ раствора гидроокиси натрия и 5 см³ этилового спирта пропускают в стакан через фильтр из ваты, который промывают 40 см³ воды. Стакан ставят на плитку и упаривают до объема 10 см³, затем приливают 100 см³ уксусной кислоты и титруют аналогично испытуемой пробе.

5.6.4. Обработка результатов

Массовую долю хлор-иона (X_3) в процентах вычисляют по формуле

$$X_8 = \frac{(V_1 - V_2) \cdot K \cdot 0,000355 \cdot 100}{m}$$

где V_i — объем раствора азотнокислого серебра с концентрацией 0,01 моль/дм³, израсходованный на титрование испытуемого образца, см³:

 V_2 — объем раствора азотнокислого серебра с концентрацией 0.01 моль/дм 3 , израсходованный на титрование контрольной пробы, см³;

0.000355 — масса хлора, соответствующая 1

0,01 моль/дм³ раствора азотнокислого серебра, г; К — поправочный коэффициент 0,01 моль/дм³ раствора

азотнокислого серебра;

т - навеска образца, г.

За результат испытания принимают среднее арифметическое двух определений, допускаемое расхождение между которыми не должно превышать 0,0002%, при доверительной вероятности P' = 0.95.

5.7. Определение кислотного числа

5.7.1. Сущность метода

Метод основан на нейтрализации раствором щелочи кислот, содержащихся в поливинилбутирале, после растворения его в этиловом спирте или спиртоводной смеси.

5.7.2. Приборы, реактивы и посуда

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104-80.

Баня водяная.

Спирт этиловый технический по ГОСТ 18299-78, марка А или спирт этиловый ректификованный по ГОСТ 18300-72, высший copt.

Калия гидроокись по ГОСТ 24363-80, ч.д.а., 0,1 моль/дм3

раствор.

Фенолфталенн (индикатор) по ГОСТ 5850-72, 1%-ный спиртовой раствор.

Вода дистиллированная по ГОСТ 6709-72.

Бюретка 1-1-0,01 или 6-2-2 по ГОСТ 20292-74.

Цилиндры 1—25 и 1—250 по ГОСТ 1770—74.

Колба круплодонная К-1-250-29/32 ТХС или коническая типа Кн-1-250-29/32 ТХС по ГОСТ 25336-82.

Холодильник ХТП-1-400-29/32 или ХШ-1-300-29/32 по ГОСТ 25336-82.

5.7.3. Проведение испытания

В колбу наливают 150 см³ этилового спирта, а при анализе поливинилбутираля марки ПШ-2 150 см3 спиртоводной смеси, взятой 85:15 по объему, и вносят (4,8±0,2) г поливинилбутираля, взвешенного с погрешностью не более 0,01 г. Колбу подсоединяют к обратному холодильнику и нагревают на водяной бане при температуре 80—85°C при периодическом перемешивании до полного растворения поливинилбутираля. Содержимое колбы охлаждают до 20-30°C, затем титруют раствором гидроокиси калия в присутствии индикатора фенолфталенна до получения слабо-розовой окраски, не исчезающей в течение 15—20 с.

Одновременно проводят контрольное определение с теми же растворителями в тех же условиях.

5.7.4. Обработка результатов

Кислотное число (X_4) в мг КОН на 1 г продукта в пересчете на сухую навеску вычисляют по формуле

$$X_4 = \frac{5.6 \cdot (V_1 - V_2) \cdot 100}{m \cdot (100 - X)}$$
,

где V_1 — объем точно 0,1 моль/дм³ раствора гидроокиси калия, израсходованный на титрование испытуемой пробы, см³;

 V_2 — объем точно 0,1 моль/дм³ раствора гидроокиси калия, израсходованный на титрование контрольной пробы, см³;

m — навеска поливинилбутираля, г;

X — массовая доля воды в испытуемом поливинилбутирале, %;

5,6 — масса гидроокиси калия, содержащаяся в 1 см³ точно 0,1 моль/дм³ раствора гидроокиси калия, мг.

За результат испытания принимают среднее арифметическое двух параллельных определений, допускаемое расхождение не должно превышать $0.02~{\rm Mr}$ КОН/г при доверительной вероятности P'=0.95.

5.8. Определение вязкости

5.8.1. Приборы, посуда и реактивы

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104—80.

Мещалка лабораторная механическая.

Ультратермостат жидкостной любого типа, поддерживающий температуру $(20\pm5)^{\circ}$ С.

Баня водяная.

Термометр ТЛ-4 4—Б 2 или ТЛ-2 1—Б 2 по ГОСТ 215—73. Колба круглодонная К-1—500—29/32 ТХС по ГОСТ 25336—82. Холодильник XIII-1—300—29/32 по ГОСТ 25336—82.

Цилиндры 1—25, 1—50, 1—100 и 1—250 по ГОСТ 1770—74.

Спирт этиловый технический по ГОСТ 17299—78, марка А или спирт этиловый ректификованный по ГОСТ 18300—72, высшего сорта.

Бензол по ГОСТ 5955-75, ч.д.а.

Дибутилсебацинат по ГОСТ 8728-77.

5.8.2. Проведение испытания

Для лаковых и клеевых марок поливинилбутираля готовят 10%-ные растворы как указано в п. 5.9. Вязкость определяют вискозиметром ВЗ-1, сопло 5,4 мм при $(20\pm0,2)^{\circ}$ С по ГОСТ 8420-74.

Для пленочных марок поливинилбутираля готовят 15%-ные растворы поливинилбутираля, пластифицированного 16%-ными дибутилсебацината в спиртобензольной смеси, взятой в соотношении 1:1 по массе (1,1:1,0 по объему). При расчетах для приготовления растворов массовая доля пластификатора не учитывается.

В круглодонную колбу помещают 8,55 г дибутилсебацината, взвешенного с погрешностью не более 0,01 г и 305 см³ спиртобен-

зольной смеси.

Затем при энергичном встряхивании содержимого колбы, чтобы поливинилбутираль не прилипал ко дну, порциями добавляют 45 г поливинилбутираля в пересчете на сухую массу, взвешенного с погрешностью не более 0.01 г.

Колбу присоединяют к обратному холодильнику, включают мешалку (ось мешалки пропущена через холодильник) и ведут растворение на водяной бане при 50—60°С и постоянном перемешивании до полного растворения, но не более 8 ч для поливинилбутираля марки ПП и 12 ч для марки ПШ-1.

После охлаждения раствора немедленно приступают к опреде-

лению вязкости.

Вязкость пленочного поливинилбутираля определяют по ГОСТ 8420—74 шариковым вискозиметром с диаметром трубки $(30\pm0,5)$ мм, снабженной водяной рубашкой. Вискозиметр устанавливают в штативе строго вертикально по отвесу.

Температуру испытуемого раствора (20±0,2)°С поддерживают с помощью ультратермостата. Раствор при этой температуре выдерживают до прекращения выделения пузырьков воздуха, но не

менее 1 ч.

Стальной шарик (ГОСТ 3722—81, IV, 7,938 мм П или В) бросают через воронку, помещенную в верхней части вискозиметра.

Измерение повторяют три раза через 10 мин.

За результат определения принимают среднее арифметическое трех измерений. Допускаемое расхождение для марок с вязкостью до 30 с не должно превышать 5%, для марок с вязкостью 31—48 с—10%, для марок с вязкостью 49 с и более не должно превышать 12% при доверительной вероятности P'=0,95.

5.9. Определение растворимости

5.9.1. Приборы, посуда и реактивы

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104—80.

Мешалка магнитная или любая мешалка лабораторная механическая.

Баня водяная.

Термометр стеклянный ртутный электроконтактный типа ТПК-3П по ГОСТ 9871—75.

Колба круглодонная К-1—250—29/32 ТХС по ГОСТ 25336—82. Холодильник XIII-1—300—29/32 по ГОСТ 25336—82.

Цилиндры 1-25, 1-100 и 1-250 по ГОСТ 1770-74.

Спирт этиловый технический по ГОСТ 17299—78, марка А или спирт этиловый ректификованный по ГОСТ 18300—72, высшего сорта.

Бензол по ГОСТ 5955-75, ч.д.а.

Вода дистиллированная по ГОСТ 6709-72.

Спирт бутиловый нормальный технический по ГОСТ 5208—81 или спирт бутиловый ч. или ч.д.а. по ГОСТ 6006—78.

Ацетон по ГОСТ 2768—79 или ацетон ч. или ч.д.а. по ГОСТ 2603—79.

5.9.2. Проведение испытания

 $(10\pm0,1)$ г поливинилбутираля (за исключением марки ΠA) в пересчете на сухую массу, взвешенного с погрешностью не более 0,01 г, растворяют при $40-50^{\circ}C$ в зависимости от марки в следующих растворителях.

ПШ-1 — Растворимость определяется на растворах, приготовленных по п. 5.8:

ПШ-2 — в 90 г спиртоводной смеси, взятой по массе в соотношении 85:15:

ПП и клеевые марки — 90 г этилового спирта;

ЛБ — в 90 г смеси этилового спирта, бутилового спирта и ацетона, взятых в соотношении 50:25:25 по массе.

Для марки ЛА:

 $(15\pm0,1)$ г поливинилбутираля в пересчете на сухую массу, взвешенного с погрешностью не более 0,01 г, растворяют при $40-50^{\circ}$ С в 85 г смеси этилового спирта, бутилового спирта и ацетона, взятых в соотношении 40:30:30 по массе.

Растворение ведут при постоянном перемешивании в колбе со стеклянной или магнитной мешалкой и обратным холодильником (ось мешалки пропущена через холодильник) до полного растворения навески поливинилбутираля. Раствор, охлажденный до 15—20°С, просматривают в проходящем свете. Раствор должен быть прозрачным или слегка мутным, не должен содержать видимых глазом нерастворенных частиц.

5.10. Определение зернистости

5.10.1. Приборы

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104—80.

Сито с сеткой № 01К, № 0355К, № 05К, № 1К, № 2К по ГОСТ 3584—73.

Кисть типа КФ-25 по ГОСТ 10597-80.

5.10.2. Проведение испытания

 (20 ± 0.5) г поливинилбутираля, взвешенного с погрешностью не более 0.01 г, просеивают вручную на соответствующем сите или наборе сит в течение 7 мин. Допускается во время просеивания раздавливать комочки при помощи кисти.

По завершении просеивания остаток с сита высыпают на лист черной бумаги, на которой визуально определяют непросеянный

остаток.

Для марки НК непросеянный остаток определяют взвешиванием. Взвешивание проводят с погрешностью не более 0,01 г.

5.10.3. Обработка результатов

Массовую долю остатка после просева (X_{5}) вычисляют в процентах по формуле

$$X_{5} = \frac{m_1 \cdot 100}{m},$$

где m— масса поливинилбутираля, г;

 m_1 — масса остатка поливинилбутираля после просева, г.

За результат испытания принимают среднее арифметическое двух параллельных определений, допускаемое расхождение не должно превышать 5%, при определении остатка на сите с сеткой № 0,1К и 0,2% на сите с сеткой № 0,5К при доверительной вероятности P'=0,95.

5.11. Определение коэффициентов светопропускания, светопоглощения и рассеяния света 5.11.1. Оборудование, приборы и реактивы

Термостат или шкаф сушильный с регулируемой температурой с погрешностью не более ± 1 °C.

Микрометр типа МК по ГОСТ 6507-78.

Пресс с обогреваемыми плитами с температурой обогрева не менее 160°C.

Фотометр ФМ-17 или фотометр аналогичного назначения с неменьшей точностью измерения, снабженный образцом сравнения триплекса с известным коэффициентом рассеяния света и образцом сравнения— «спутником» из замутненного стекла. При разногласии должен использоваться фотометр ФМ-17.

Фотометр ИФТ-15 или ФМШ-56М или фотометр аналогичного назначения с неменьшей точностью измерения. При разногласиях должен использоваться фотометр ИФТ-15.

Мешок резиновый с отводной трубкой.

Вакуум — насос, обеспечивающий получение остаточного давления не более (10 мм рт. ст.) 0,0013 МПа.

Автоклав, позволяющий создавать давление до 3,0 МПа (30 кгс/см²) и температуру до 160°С.

Термометр ТЛ-2 1—Б 4 по ГОСТ 215—73.

Термометр ТЛ-2 2-Б 3 по ГОСТ 215-73.

Стекло листовое термически полированное по ГОСТ 7132—78 Электролампы по ГОСТ 2023—75.

Натрий углекислый по ГОСТ 83—79, ч.д.а., 10%-ный раствор.

Вода дистиллированная по ГОСТ 6709-72.

Спирт этиловый синтетический технический по ГОСТ 11547—80, очищенный, или спирт этиловый технический по ГОСТ 17289—78, марка А или спирт этиловый ректификованный технический по ГОСТ 18300—72, высшего сорта.

5.11.2. Подготовка к испытаниям

Пленки для изготовления образцов триплексов из поливинилбутираля марок ПП и ПШ-1 получают отливом, из поливинилбутираля марки ПШ-2— прессованием.

5.11.2.1. Изготовление пленки отливом

После растворения соответствующей марки поливинилбутираля, как указано в п. 5.9, проводят отлив пленки на зеркальное полированное стекло, ограниченное деревянными рамками (кюветы).

Кюветы предварительно тщательно моют дистиллированной водой, высущивают, устанавливают по уровню в вытяжном шкафу и сверху закрывают стеклами, которые сдвигают по мере удаления основного количества растворителя.

Испарение растворителя ведется при температуре (20±5)°С, образовавшуюся пленку при необходимости досушивают при обо-

греве электролампами при (42±7)°С.

Подсущенную пленку снимают со стекла, помещают в термостат и сущат при $(55\pm5)^{\circ}$ С до массовой доли остаточного растворителя не более 1%.

Массовую долю остаточного растворителя определяют сушкой навески поливинилбутиральной пленки массой (0.85 ± 0.05) г в термостате при $(120\pm2)^{\circ}$ С в течение 30 мин. Средняя толщина пленки должна быть (0.5 ± 0.05) мм.

5.11.2.2. Изготовление пленки прессованием

На полированную пластину размером 300×300 мм, покрытую бесцветной триацетатной или лавсановой пленкой, накладывают ограничитель толщиной 1 мм и равномерным слоем насыпают 130 г поливинилбутираля марки ПШ-2, взвешенного с погрешностью не более 0,5 г. Сверху порошок закрывают триацетатной или лавсановой пленкой и второй пластиной, поверх которой кладут термостойкую эластичную прокладку. Собранный таким образом пакет устанавливают под пресс. Плиты пресса сближают и нагревают до 150°С. Затем прессуют при указанной температуре и давлении 9,0—10,0 МПа (90—100 кгс/см²). После 20 мин выдержки, плиты пресса охлаждают до (13±3)°С без снижения давления. Средняя толщина пленки должна быть (1,0±0,05) мм. Оптические свойства поливинилбутираля (коэффициент погло-

шения света, коэффициент светопропускания, коэффициент рассеяния света, насыщенность цвета) определяют на трех образцах триплексов, изготовленных как указано в п. 5.11.2.3 и п. 5.11.2.4.

5.11.2.3. Подготовка образцов триплексов Стекла для образцов триплексов должны быть полированными, с отшлифованными краями, размером 50×50 или 75×75 мм или 120×120 мм, толщиной 2—3 мм. Пузыри, царапины и сколы не допускаются.

Стекла тщательно моют горячим 60—70°С 10%-ным раствором соды, затем водопроводной и дистиллированной водой. Чистые стекла протирают сухой тканью и затем спиртом. После этого стекла окончательно протирают чистой тканью, не имеющей ворса (капрон, батист), и складывают попарно. Определяют толщину и светопропускание пары стекол, сложенных вместе. Светопропускание пары стекол должно быть не менее 80%.

Пленку, изготовленную в соответствии с п. 5.11.2, разрезают на листы необходимой величины, тщательно моют в алюминиевых или эмалированных ванночках в три приема: вначале в теплой воде с температурой 55-60°C, затем дважды в дистиллированной воде с температурой 20-30°C.

Вымытую пленку протирают сухой чистой тканью, не имеющей ворса, и подвешивают на стеклянных палочках в термостат, нагретый до 55—60°С для сушки, сушат до массовой доли летучих веществ не более 0,5% по п. 5.11.2.1.

Пленку подготавливают в специальной комнате с соблюдением особой чистоты помещения. В помещение и в шкаф для сушки подают обеспыленный воздух.

Подготовленную пленку нарезают или вырубают по размерам стекол. Пакеты образцов триплексов собирают в специальном изолированном помещении с обеспыленным воздухом на столике с освещенным снизу стеклом. Для получения клеящего слоя требуемой толщины берут несколько слоев пленки. Для определения коэффициентов поглощения и рассеяния света, а также насыщенности света толщина клеящего слоя должна быть (5 ± 0.5) мм. Пленки кладут между двумя подготовленными стеклянными пластинами и полученный пакет перевязывают ниткой для предотвращения сдвига. Собранные пакеты вкладывают в гнезда резиновых рамок размером 50×50 , 75×75 или 120×120 мм в зависимости от размеров триплексов. Толщина резиновых рамок составляет 6 мм.

5.11.2.4. Подготовление образцов триплексов

Образцы триплексов в рамках помещают в резиновый мешок с отводной трубкой. Открытый край мешка по всей длине зажимают струбцинами. Отводную трубку мешка присоединяют к вакуум-насосу, с помощью которого вакуумируют образцы триплексов в течение 15—30 мин при температуре 20—30°С и остаточном давлении 0,002—0,003 МПа.

По окончании вакуумирования отводную трубку мешка закрывают пробкой, мешок с образцами помещают в автоклав, заполненный горячей водой, нагретой до 60—70°С и крышку герметично закрывают.

В зависимости от марок поливинилбутираля воду в автоклаве доводят до соответствующей температуры и нагнетанием воды

гидравлическим насосом создают необходимое давление.

Образцы триплексов с пленкой из поливинилбутираля марок ПП и ПШ-1 выдерживают в автоклаве при 95—100°С и давлении 1,7—1.8 МПа (17—18 кгс/см²) в течение 45 мин.

Температуру воды в автоклаве, куда помещен резиновый мешок с образцами триплексов с пленкой из поливинилбутираля марки ПШ-2 после вакуумирования, доводят до 100°С, затем гидравлическим насосом создают давление 0,3—0,5 МПа (3—5 кгс/см²) и при этом давлении поднимают температуру до 150°С. После этого давление повышают до 2,5 МПа (25 кгс/см²) и образцы триплексов выдерживают в этих условиях в течение 2 ч.

После указанной выдержки воду в автоклаве охлаждают до 50—60°С, снижают давление и выгружают резиновые мешки с отпрессованными образцами триплексов. Мешки охлаждают на воздухе до температуры 20—30°С, после чего их вскрывают в образцы триплексов выгружают, очищают от вытекшей пленки, промывают водой с мылом при помощи щетки, протирают насухо чистой тканью, не имеющей ворса (шифон, капрон), и измеряют их толщину.

Перед определением оптических показателей пленки испытуемые образцы стекол и триплексов протирают безворсовой тканью, смоченной в спирте.

Неравномерность по толщине образца триплексов допускается не более 0.2 мм.

5.11.3. Определение коэффициента светопропускания

За коэффициент светопропускания однослойного триплекса принимают отношение всего светового потока, прошедшего через образец, к потоку, падающему на образец.

Включив прибор в сеть, до начала испытания дают выдержку 10 мин. Перекрыв пучок света, корректируют нуль микроампер-

метра.

Светопропускание определяют в трех точках испытуемого образца триплекса. В каждой точке производят отсчет величиных световых потоков, падающих непосредственно на фотоэлемент (B) и прошедших через образец (A).

Коэффициент светопропускания образца триплекса (το), вы-

раженный в процентах, вычисляют по формуле

$$\tau_0 = \frac{A \cdot 100}{B} ,$$

где A — величина светового потока, прошедшего через образец; B — величина светового потока, падающего непосредственно на фотоэлемент.

Для удобства вычисления коэффициента светопропускания, добиваются в отсутствие образца показания микроамперметра 100 (изменением площади отверстия диафрагмы). За результат определения принимают среднее арифметическое всех произведенных замеров. Допускаемое расхождение не должно превышать 2% при доверительной вероятности P'=0,95. Аналогично измеряют коэффициент светопропускания τ_0 пары стекол.

5.11.4. Определение коэффициента поглощения света

Коэффициент поглощения света бутиральной пленки характеризуется отношением потока белого света, поглощенного в слое толщиной 1 мм, к потоку, вступившему в этот слой.

Для определения коэффициента поглощения измеряют пропускание образца триплекса, изготовленного из испытуемой пленки, и пропускание пары стекол, между которыми затриплексована пленка.

Коэффициент пропускания пары стекол— τ_0 , выраженный в процентах, определяют в соответствии с методикой, изложенной в п. 5.11.3.

$$\tau_{\rm c} = \frac{A_1 \cdot 100}{B_1} ,$$

где A_1 — величина светового потока, прошедшего через пару стекол;

В₁ — величина светового потока, падающего непосредственно на фотоэлемент.

Коэффициент пропускания испытуемых многослойных триплексов — τ_0 , выраженный в процентах, определяют в соответствии с методикой, изложенной в п. 5.11.3.

Коэффициент поглощения света пленки с в процентах вычисляют с учетом потерь на отражение от поверхностей образца триплекса и стекол по формуле

$$\lg\left(1-\frac{\alpha}{100}\right) = \left[\lg\frac{\tau_0}{\tau_c}\cdot 0,96^2\right]:b,$$

где b — толщина пленки в триплексе, мм;

0,96 — коэффициент, учитывающий потери на отражение света от поверхности стекла.

Для облегчения расчетов вычисления проводят по табл. 1—2 справочного приложения.

5.11.5. Определение коэффициента рассеяния света

Коэффициент рассеяния света для бутиральной пленки характеризуется отношением яркости света, рассеянного слоем пленки толщиной 1 мм под углом 45° к направлению падающего светового пучка, к ее освещенности.

Для определения коэффициента рассеяния испытуемый образец сравнивают с образцом сравнения на фотометре ФМ-17 под-

становкой.

Испытание проводят на трех образцах триплексов размером 50×50 или 75×75 мм с толщиной клеящего слоя $(5\pm0,5)$ мм, изготовленных как указано в п. 5.11.2.4.

5.11.5.1. Проведение испытания

Оба барабана фотометра устанавливают на деление 100, что соответствует полному раскрытию диафрагм. Над правым отверстием столика помещают образец сравнения рассеяния. Вращают тот из барабанов, который соответствует более яркому полуполю в окуляре фотометра, до получения равенства обоих полуполей по яркости. Снимают показание по шкале барабана n_0 (показание образца сравнения в процентах), отмечая при этом, с какого барабана (левого или правого) оно получено. Повторяют измерение в трех точках и для дальнейших вычислений берут среднее арифметическое результатов трех определений. Если испытывается серия образцов триплексов, для всей серии можно использовать показание n_0 , определенное описанным способом один раз в начале испытаний.

Убрав из пучка света образец сравнения рассеяния, помещают на его место испытуемый образец триплекса и тем же способом, что и для образца сравнения определяют показание n_x образца триплекса (по левому или правому барабану).

Измерение повторяют три раза. За результат определения принимают среднее арифметическое всех произведенных замеров. Допускаемое расхождение не должно превышать 2% при доверительной вероятности P'=0.95.

Для вычисления коэффициента рассеяния света в кд/лм \cdot мм η_x поливинилбутиральной пленки используют одну из четырех приведенных ниже формул, в зависимости от того, по какому барабану (правому или левому) получены отсчеты.

$$\eta_x = \eta_0 \frac{n_x}{n_0 \cdot b} - n_0$$
 и n_x по левому барабану;
$$\eta_x = \eta_0 \frac{n_x \cdot n_0}{100 \cdot 100 \cdot b} - n_0$$
 по правому барабану, а n_x — по левому барабану;
$$\eta_x = \eta_0 \frac{n_0}{n_x \cdot b} - n_0$$
 и n_x по правому барабану;

$$\eta_x = \eta_0 \frac{100 \cdot 100}{n_x \cdot n_0 \cdot b}$$
 — n_0 по левому барабану, а n_x — по правому барабану.

правому оараоану, где n_0 — показание образца сравнения:

 n_x — показание образца триплекса;

 η_0 — коэффициент рассеяния образца сравнения, кд/лм; b — толщина пленки, мм.

5.11.6. Определение насыщенности цвета

Насыщенность цвета определяют сравнением образца триплексов с набором стандартных стеклянных пластин с насыщенностью цвета 1, 2 и 4 сатрона (близких по цветному тону к поливинилбутиральной пленке).

Испытание проводят на трех образцах триплексов размером

 50×50 или 75×75 мм, изготовленных по п. 5.11.2.4.

Насыщенность цвета определяют сравнением триплексов с на-

бором стеклянных образцов сравнения.

Сравнение образца триплекса с набором образцов сравнения проводят визуально при дневном свете. Образец триплекса и образец сравнения помещают рядом на листе белой бумаги. Для большей точности сравнения соседние торцовые грани триплекса и образца сравнения перекрывают полоской черной бумаги. Стандартное стекло или комбинацию стандартных стекол подбирают так, чтобы получить насыщенность цвета, наиболее близкую к насыщенности цвета испытуемого образца триплекса.

Соответствующую насыщенность цвета образцов сравнения в сатронах принимают за насыщенность цвета образца три-

плекса.

Насыщенность цвета 1 мм клеящего слоя в триплексе (C) в сатронах вычисляют по формуле

$$C=\frac{s}{b}$$
,

где s — насыщенность цвета образца триплекса, сатрон;

толщина клеящего слоя в триплексе, мм.

5.11.7. Определение насыщенности цвета после прогрева

Три образца триплекса от одной партии, размером 50×50 или 75×75 мм, изготовленный как указано в п. 5.11.2.4, перевязывают крест-накрест ниткой или тонкой проволокой, концы которой завязывают в виде петли.

Образцы триплексов подвешивают в горизонтальном положении на стеклянных палочках в термостат, нагретый до (135 ± 2) °C, и выдерживают в течение 15 ч, затем охлаждают и определяют насыщенность цвета пленки, как указано в п. 5.11.6.

В клеящем слое образцов триплексов, выдержанных в течение 15 ч при (135±2)°С, не должно быть пятен и воздушных пузырей.

5.12. Определение показателя

текучести

расплава

Показатель текучести расплава поливинилбутираля определяют на приборе ИИРТ по ГОСТ 11645—73 при температуре экструзионной камеры $(170\pm0.5)^{\circ}$ С для марки ПШ-1 и при $(180\pm0.5)^{\circ}$ С для марки ПШ-2 при нагрузке 211.9 H (21.6 кгс), после выдержки материала в нагретом приборе, под давлением в течение 10 мин.

5.12.1. Приборы и посуда

Прибор ИИРТ для определения текучести расплава.

Шкаф сушильный с регулируемой температурой.

Секундомер по ГОСТ 5072-79.

Термометр ТЛ-2 1-Б по ГОСТ 215-73.

Стаканчик для взвешивания типа СН по ГОСТ 25336-82.

Пресс для таблетирования, создающий удельное давление не менее 150 МПа (1500 кгс/см²).

5.12.2. Проведение испытания

Для определения текучести расплава приготовляют образцы таблетки. Для этого навеску поливинилбутираля $(11,5\pm0,5)$ г, взвешенную с погрешностью не более 0,01 г, сушат по ГОСТ 17557-80 до массовой доли воды не более 0,2%.

Таблетируют сразу после окончания процесса сушки при температуре $(25\pm5)^{\circ}$ С и давлении 130-140 МПа (1300-140)1400 кгс/см²). Таблетки изготовляют высотой не менее 10 мм и диаметром, соответствующим внутреннему диаметру канала прибора ИИРТ. После каждой загрузки в пресс-форму, стаканчик с оставшимся поливинилбутиралем закрывают крышкой во избежание попадания влаги из воздуха.

Приготовленные таблетки также собирают в стаканчик с притертой крышкой. Процесс таблетирования и загрузки таблеток в прибор должен продолжаться не более 7 мин.

Испытание проводят по ГОСТ 11645—73.

5.12.3. Обработка результатов

Показатель текучести расплава (ПТР) в г/10 мин вычисляют по формуле

$$\Pi TP = \frac{600 \cdot m}{t} ,$$

где m — масса прутка, r;

t — промежуток времени между последовательными срезаниями прутков, с.

За результат испытания принимают среднее арифметическое двух определений на трех прутках, допускаемое расхождение между которыми не должно превышать 5% при доверительной вероятности P' = 0.95.

- 5.13. Определение прозрачности раствора поливинилбутираля, совмещенного с бакелитовым лаком
 - 5.13.1. Приборы, посуда и реактивы

Весы лабораторные технические любой марки второго класса точности по ГОСТ 24104—80.

Мешалка лабораторная механическая.

Баня водяная.

Прибор для определения прозрачности.

Термометр ТЛ-2 1-Б 3 по ГОСТ 215-73.

Колба круглодонная трехтубусная КГУ-3—1—500—29/32 ТХС по ГОСТ 25336—82.

Термометр типа ТЛ-50 № 10 по ГОСТ 16590-71.

Цилиндр 1—250 по ГОСТ 1770—74.

Холодильник типа XIII-1—300—29/32 по ГОСТ 25336—82.

Пипетка 6—1—10 или 6—2—10 по ГОСТ 20292—74.

Спирт этиловый технический по ГОСТ 17299—78, марка А. Лак бакелитовый марки ЛБС-1 по ГОСТ 901—78, 55%-ный раствор.

5.13.2. Проведение испытания

В колбу помещают 19,4 г испытуемого поливинилбутираля, взвешенного с погрешностью не более 0,01 г, и приливают 218 см³ спирта.

Колбу присоединяют к обратному холодильнику, включают мешалку и растворяют на водяной бане при 40—45°С при по-

стоянном перемешивании, но не более 12 ч.

Раствор поливинилбутираля не должен содержать видимых глазом включений. В полученный раствор через боковой тубус колбы вводят 5,6 см³ бакелитового лака и продолжают перемешивание при той же температуре в течение 15 мин.

Прозрачность раствора поливинилбутираля, совмещенного с бакелитовым лаком, определяют через час после его приготовления на приборе (чертеж), состоящем из электрической лампы 6 мощностью 40 Вт, матового стекла 4 с крестом, нанесенным на матовой стороне черной тушью (две взаимно перпендикулярные линии толщиной 2 мм), помещенного на стакан 5 матовой поверхностью вниз так, чтобы точка пересечения линии креста находинось в центре отверстия стакана, цилиндра 3 из бесцветного стекла с плоским дном, толщиной стенки 0,8—1,0 мм, диаметром (35±2) мм и высотой 250—300 мм, неметаллического футляра 2, имеющего сверху отверстие диаметром (19±1) мм для наблюдения.

В цилиндр 3 по стенке наливают раствор поливинилбутираля до высоты 15 см и помещают в футляр 5 на стекло с крестом 4,

включают лампу 6 и визуально через отверстие на крышке футляра рассматривают изображения креста.

Степень прозрачности полученного раствора выражают высотой слоя раствора в цилиндре, при котором наблюдается исчезно-

вение черного знака:

до 15 см раствор считается мут-

от 20 до 15 см — слегка мутным: более 20 см — прозрачным.

6. УПАКОВКА, МАРКИРОВКА. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Поливинилбутираль упаковывают в мягкие контейнеры разового использования типа МКР-1.0С с вкладышем и МКР-1,0М по нормативнотехнической документации или в трехбумажные мешки слойные 2226-75 с полиэтиленовым мешкомнормативно-техничевкладышем по ской документации. Бумажные мешки прошивают машинным способом, полиэтиленовые мешки-вкладыши плотно завязывают или заваривают. Масса мешка брутто должна быть не более 15 кг. Допускаемые отклонения массы нетто поливинилбутираля, упакованного в бумажные мешки, не должны быть более 3% от массы указанной на мешке.

Масса брутто контейнера разового использования должна быть не более 1000 Kr.

6.2. Транспортная маркировка-по ГОСТ 14192-77 с указанием манипуляционного знака «Боится сырости»

и знака опасности соответствующего категории опасности поли-

винилбутираля 921 по ГОСТ 19439-81.

На каждый мешок наклеивают ярлык или несмываемой краской наносят трафарет с обозначениями:

наименования и товарного знака предприятия-изготовителя; наименования продукта и марки;

номера партии: массы нетто;

Ø135 $\phi_{35\pm2}$ 92 Φ 130

/-- распорное кольцо; 2-футляр; 3-стеклянный цилиндр; 4-стекло с крестом: б-стакан;

даты изготовления;

обозначения настоящего стандарта.

В специальный карман контейнера вкладывают документ о качестве.

6.3. Поливинилбутираль транспортируют любым видом транспорта, кроме воздушного, в крытых транспортных средствах в соответствии с правилами перевозки опасных грузов, действующими на соответствующем виде транспорта.

Поливинилбутираль, упакованный в бумажные мешки, транспортируют в пакетированном виде на плоских поддонах грузоподъемностью 1,0 и 2,0 т по ГОСТ 9078—74 или в универсальных контейнерах типа УУК-3 и АУК-1,25 по ГОСТ 18477—79.

Пакеты формируют габаритными размерами $840 \times 620 \times 1150$ мм или 1240 - 840 - 1350 мм и массой брутто не более 1,0 т и 1,25 т

соответственно по ГОСТ 24597-81.

Пакетирование осуществляется механизированным или ручным способом по ГОСТ 21929—76. На сформированный пакет груза наносят манипуляционный знак, основные дополнительные и информационные надписи по ГОСТ 14192—77.

Средства скрепления транспортных пакетов — по

ΓΟCΤ 21650—76.

Материал для скрепления — проволока стальная, низкоуглеродистая общего назначения по ГОСТ 9282—74, пленка полиэтиленовая термоусадочная по ГОСТ 25951—83 или капроновые, или полукапроновые ленты по нормативно-технической документации.

6.4. Поливинилбутираль хранят в закрытом помещении при

температуре не более плюс 25°C.

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель гарантирует соответствие поливинилбутираля требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

7.2. Гарантийный срок хранения поливинилбутираля — 12 ме-

сяцев со дня изготовления.

ПРИЛОЖЕНИЕ Справочное

Таблица 1

_ ⁷ o_										
T _C	0	1	2	3	4					
6,970 0,975 0,980 0,985 0,990 0,995 1,000 1,005 1,010 1,025 1,020 1,025 1,030 1,035 1,040 1,045 1,050 1,055 1,060	0,04869 0,04646 0,04423 0,04202 0,03982 0,03764 0,03546 0,03329 0,03114 0,02899 0,02686 0,02474 0,02262 0,02052 0,01843 0,01427 0,01221 0,01015	0,04824 0,04601 0,04379 0,04158 0,03939 0,03720 0,03503 0,03286 0,03071 0,02857 0,02643 0,02431 0,02220 0,02010 0,01593 0,01386 0,01180 0,00966	0,04779 0,04557 0,04335 0,04114 0,03895 0,03676 0,03459 0,03243 0,03028 0,02814 0,02601 0,02389 0,02178 0,01968 0,01759 0,01551 0,01344 0,01139 0,00934	0,04735 0,04512 0,04291 0,04070 0,03851 0,03633 0,03416 0,03210 0,02985 0,02771 0,02558 0,02347 0,02126 0,01968 0,01718 0,01510 0,01303 0,01097 0,00893	0,04690 0,04468 0,0426 0,04026 0,03807 0,03589 0,03373 0,03157 0,02942 0,02729 0,02516 0,02304 0,02094 0,01676 0,01468 0,01262 0,01056 0,00852					

Расчет ведут следующим образом:

- 1) коэффициент пропускания образца триплекса τ_0 делят на коэффициент пропускания пары стекол τ_0 ;
- 2) в табл. 1 находят значение $\lg \left(\frac{\tau_0}{\tau_c} \cdot 0,96^2\right)$, соответствующее частному от деления τ_0 на τ_0 ;
- 3) найденное по табл. 1 значение $\lg\left(\frac{\tau_0}{\tau_c}\cdot 0.96^2\right)$ делят на толщину пленки b:
- 4) по табл. 2 находят искомое значение коэффициента поглощения, соответствующее найденному частному [$\lg \left(\frac{\tau_0}{\tau_*} \cdot 0.96^2\right)$]: b.

Таблица 2

α, %	$\frac{\lg\left(\frac{\tau_0}{\tau_c}\cdot 0,96^a\right)}{b}$	a, %	$\frac{\lg\left(\frac{\tau_0}{\tau_c} \cdot 0.96^2\right)}{b}$
2,0 1,95 1,90 1,70 1,65 1,60 1,55 1,50 1,45 1,45 1,45 1,35 1,30 1,25 1,20 1,25 0,50 0,45	0,00877 0,00855 0,00833 0,00745 0,00723 0,00700 0,00677 0,00656 0,00634 0,00612 0,00590 0,00568 0,00546 0,00524 0,00502 0,00188	1,10 1,05 1,85 1,80 1,75 1,00 0,95 0,90 0,85 0,80 0,75 0,60 0,65 0,60 0,55	0,00480 0,00458 0,00811 0,00789 0,00767 0,00415 0,00393 0,00371 0,00349 0,00327 0,00365 0,00283 0,00261 0,00240 0,00174 0,00152

Редактор А. С. Пшеничная Технический редактор Н. В. Келейникова Корректор Е. И. Евтеева

Сдано в наб. 04.04.85 Подп. в печ. 18.06.85 2,0 усл. п. л. 2,25 усл. кр.-отт. 2,12 уч.-изд. л. Тир. 16.000 Цена 10 коп. Изменение № 1 ГОСТ 9439—85 Поливинилбутираль. Технические условия Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 21.12.88 № 4338

Дата введения 01.06.89

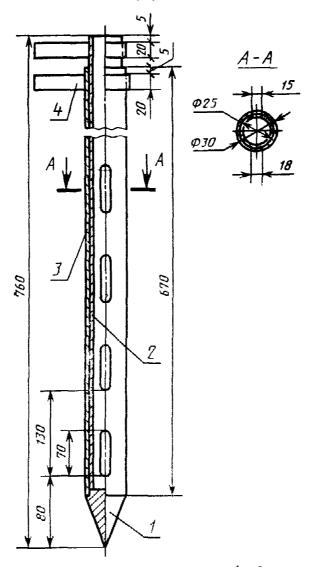
Вводная часть. Второй абзац исключить.

Пункт 2.2. Таблица 1. Головка. Исключить слова: «Высшая категория качества», «Первая категория качества»;

графа «Норма для марки. Первый сорт ПШ-2». Для показателя 1 заменить

вначение: 0,7 мм на 0,3-0,7 мм;

графа «Норма для марки КА, КБ». Для показателя 5 исключить значения: 0,002 (4 раза).


Пункт 4.4. Исключить слова: «клеев марок БФ-2, БФ-4».

Пункт 5.1 до слов «Отобранные точечные пробы» изложить в новой редакции: «Точечные пробы из упаковочных единии, отобранных в соответствии с п. 4.2, отбирают пробоотборииком (черт. 1), состоящим из двух вставленных друг в друга свободно вращающихся труб с четырьмя окнами для отбора продукта, наконечника и ручки. Пробоотборник с закрытыми окнами погружают на 3/4 глубины упаковки по вертикальной оси и поворотом ручки открывают окна. После отбора пробы окна закрывают обратным поворотом ручки»;

дополнить чертежом — 1:

(Продолжение см. с. 219)

(Продолжение изменения к ГОСТ 9439—85)

1 — наконечник; 2 — внутренняя тоуба; 3 — наружная труба; 4 — ручка Черт. 1

(Продолжение см. с. 220)

Пункты 5.3, 5.12.2. Заменить ссылку: ГОСТ 17557—80 на ГОСТ 17537—72. Пункты 5.4.2, 5.5.2, 5.7.2, 5.8.1, 5.9.1. Заменить ссылки: ГОСТ 24104—80 на ГОСТ 24104—88, ГОСТ 18300—72 на ГОСТ 18300—87. Пункты 5.6.2, 5.13.1. Заменить ссылку: ГОСТ 24104—80 на ГОСТ 24104—88. Пункт 5.7.2. Заменить ссылки: ГОСТ 18299—78 на ГОСТ 17299—78.

Пункт 5.10.1. Заменить ссылки: ГОСТ 3584-73 на ГОСТ 6613-86, ГОСТ 24104-80 на ГОСТ 24104-88.

Пункт 5.11.1. Заменить ссылки: ГОСТ 17289-78 на ГОСТ 17299-78, ГОСТ 18300—72 на ГОСТ 18300—87;

исключить ссылку: ГОСТ 11547-80.

Пункт 6.2. Третий абзац изложить в новой редакции: «наименования и (или) товарного знака предприятия-изготовителя»;

заменить ссылку: ГОСТ 19439-81 на ГОСТ 19433-81.

Пункт 6.3. Заменить ссылку: ГОСТ 9078-74 на ГОСТ 9078-84.

(ИУС № 4 1989 г.)

	Единица			
Велична	Наименование	обозначение		
	Hannengeanne	международное русское		
основны	Е ЕДИНИ	пр си		
Длина	метр	m	M	
Macca	килограмм	kg	Kľ	
Время	секунда	S	¢	
Сила электрического тона	ампер	A	A	
Термодинамическая температура	кельвин	к	K	
Количество вещества	моль	mol	моль	
Сила света	кандела	cd	кд	
ДОПОЛНИТЕ	UPHPE ET	Тиницы си	I	
Плоский угол	радиан	rad	ραд	

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

стерадиан

SF

Телесный угол

		Единица		Выражение через	
Беличин	Наименова-	Обозначение		основине и де-	
	ние	междуна- родное	руссное	полнительные единицы СМ	
Частота	герц	Hz	Гц	c-1	
Сила	ньютон	N	н	W·KL·C-3	
Давление	паскаль	Pa	Па	M-1 · KF · C-3	
Энергия	джоуль	j	Дж	M ² ·KΓ·Ç— ³	
Мощность	BOTT	W	Br	M2·KL·¢_3	
Количество электричества	кулон	C	Кл	c·A	
Электрическое напряжение	ВОЛЬТ	ν	В	M2.KF.C-3.A-	
Электрическая емкость	фарад	F	Ф	M-3KL-1.€4.A1	
Электрическое сопротивление	(om	<u> </u>	Q _M	M2.KF.C-3.A-	
Электрическая проводимость	сименс	S	CM	M-4KL-1. C3. A8	
Поток магнитной индукции	вебер	Wb	B 6	M2 - KT- C-2-A-1	
Магнитчая индукция	тесла	T	Tn	Kr.c-2 · A-1	
Индуктивность	генри	Н	Гн	M2-KL-C-3-A-	
Световой поток	люмен	lm	MIL	кд - ср	
Освещенность	люкс	1x	лк	м-2 ⋅ кд ⋅ ср	
Активность радионуклида	беккерель	Bq	Бк	c-i	
Поглощенная доза ионизирую-	грэй	Gy	Гр	W2 - C-4	
щего излучения Эквивалентная доза излучения	зиверт	Sv	3 a	M2 - C-2	