

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ПОТОКА ИЗЛУЧЕНИЯ И ЭНЕРГЕТИЧЕСКОЙ ОСВЕЩЕННОСТИ В ДИАПАЗОНЕ ДЛИН ВОЛН 0,03~0,4 мкм

FOCT 8.552-86

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСКВЭ

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

В. М. Квочка, канд. техн. наук (руководитель темы); И. Н. Гусева; О. А. Микаеза; В. И. Сачков, канд. техн. наук; А. И. Трубников, канд. техн. наук

ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандарта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29 октября 1986 г. № 3284

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

РОСУДАРСТВЕННАЯ ПОВОВОНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ПОТОКА ИЗЛУЧЕНИЯ И ЭНЕРГЕТИЧЕСКОЙ ОСВЕЩЕННОСТИ В ДЛЯПАЗОНЕ ДЛИН ВОЛН 0.03 \div 0.4 мкм

ГОСТ 8.552—86

State system for ensuring the uniformity of measurements. State verification schedule for means of measuring radiant flux and irradiance in the wavelength range of 0,03÷0,4 μm OKCTV 0008

Постановлением Государственного момитета СССР по стандартам от 29 октября 1986 г. № 3284 срок введения установлен с 01.07.87

Настоящий стандарт распространяется на государственную поверочную схему для средств измерений потока излучения и энергетической освещенности в диапазоне длин волн 0,03÷0,4 мкм и устанавливает назначение установки высшей точности для воспроизведення единиц потока излучения — ватта (Вт) и энергетической освещенности — ватта на квадратный метр (Вт/м²) в диапазоне длин волн 0,03÷0,4 мкм, комплекс основных средств измерений, входящих в ее состав, основные метрологические характеристики установки высшей точности и порядок передачи размера единиц потока излучения и энергетической освещенности в диапазоне длин волн 0,03÷0,4 мкм от установки высшей точности при помощи образцовых средств измерений рабочим средствам измерений с указанием погрешностей и основных методов поверки.

1. УСТАНОВКА ВЫСШЕЙ ТОЧНОСТИ

1.1. Установка высшей точности предназначена для воспроизведения и хранения единиц потока излучения и энергетической освещенности в диапазоне длин волн $0.03 \div 0.4$ мкм и передачи размера единиц при помощи образцовых средств измерений рабочим средствам измерений, применяемым в народном хозяйстве с целью обеспечения единства измерений в стране.

Издание официальное

Перепечатка воспрещена

- 1.2. В основу измерений спектральных значений потока излучения и энергетической освещенности в диапазоне длин волн 0,03 ÷ 0,4 мкм должны быть положены единицы, воспроизводимые указанной установкой высшей точности.
- 1.3. Установка высшей точности состоит из комплекса следующих средств измерений:
- в диапазоне длин волн 0,03÷0,102 мкм источник излучения— проточная разрядная лампа с инертными газами;

монохроматор скользящего падения;

опорный приемник (набор ионизационных камер полного поглощения и двойных ионизационных камер) с комплектом измерительной и вспомогательной аппаратуры;

в диапазоне длин волн 0,103 ÷ 0,4 мкм

источник излучения — проточная разрядная лампа с водородом или азотом;

двойной монохроматор;

набор тепловых приемников с комплектом измерительной и вспомогательной аппаратуры.

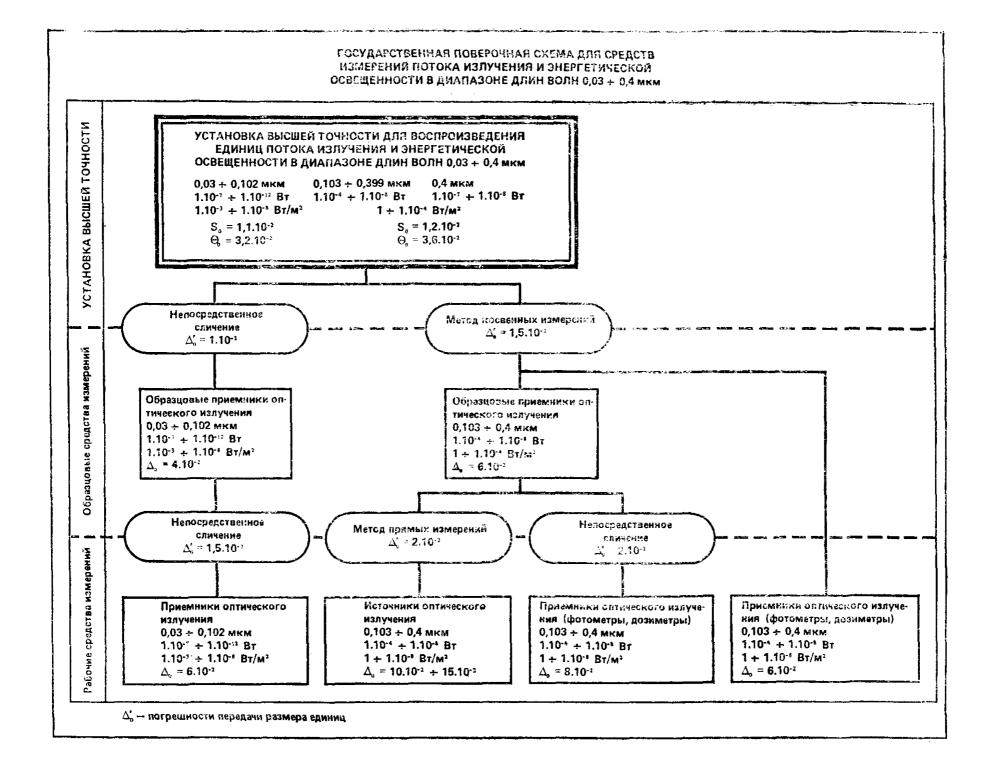
- 1.4. Диапазон значений потока излучения, воспроизводимых установкой высшей точности в диапазоне длин волн $0.03 \div 0.102$ мкм составляет $1 \cdot 10^{-7} \div 1 \cdot 10^{-12}$ Вт, диапазон значений энергетической освещенности $1 \cdot 10^{-3} \div 1 \cdot 10^{-8}$ Вт/м²; в диапазоне длин волн $0.103 \div 0.4$ мкм диапазон значений потока излучения составляет $1 \cdot 10^{-4} \div 1 \cdot 10^{-8}$ Вт; диапазон значений энергетической освещенности $1 \div 1 \cdot 10^{-4}$ Вт/м².
- 1.5. Установка высшей точности обеспечивает воспроизведение единиц потока излучения и энергетической освещенности со средними квадратическими отклонениями результата измерений S_0 , не превышающими $1.1 \cdot 10^{-2}$ и $1.2 \cdot 10^{-2}$ в диапазонах длин волн $0.03 \div 0.102$ мкм и $0.103 \div 0.4$ мкм соответственно при 10 независимых наблюдениях. Неисключенные систематические погрешности Θ_0 , не превышают $3.2 \cdot 10^{-2}$ и $3.6 \cdot 10^{-2}$ в диапазонах длин волн $0.03 \div 0.102$ мкм и $0.103 \div 0.4$ мкм соответственно.
- 1.6. Для обеспечения воспроизведения единиц потока излучения и энергетической освещенности в диапазоне длин волн $0.03 \div 0.4$ мкм с указанной точностью, должны быть соблюдены правила хранения и применения установки высшей точности, утвержденные в установленном порядке.
- 1.7. Установку высшей точности применяют для передачи размера единиц потока излучения и энергетической освещенности в диапазоне длин волн $0.03 \div 0.4$ мкм образцовым средствам измерений непосредственным сличением в диапазоне длин волн $0.03 \div 0.102$ мкм и методом косвенных измерений в диапазоне длин волн $0.103 \div 0.4$ мкм.

2. ОБРАЗЦОВЫЕ СРЕДСТВА ИЗМЕРЕНИЙ

2.1. В качестве образцовых средств измерений в диапазоне длин волн $0.03 \div 0.102$ мкм применяют приемники оптического излучения в диапазонах значений потока излучения $1 \cdot 10^{-7} \div 1 \cdot 10^{-12}$ Вт и энергетической освещенности $1 \cdot 10^{-3} \div 1 \cdot 10^{-8}$ Вт/м².

В качестве образцовых средств измерений в диапазоне длин волн $0.103 \div 0.4$ мкм применяют приемники оптического излучения в диапазонах значений потока излучения $1 \cdot 10^{-4} \div 1 \cdot 10^{-8}$ Вт и энергетической освещенности $1 \div 1 \cdot 10^{-4}$ Вт/м².

2.2. Пределы допускаемых относительных погрешностей Δ_0 образцовых средств измерений составляют от $4\cdot 10^{-2}$ до $6\cdot 10^{-2}$.


2.3. Образцовые средства измерений применяют для поверки рабочих средств измерений методом прямых измерений и непосредственным сличением.

3. РАБОЧИЕ СРЕДСТВА ИЗМЕРЕНИЙ

3.1. В качестве рабочих средств измерений в диапазоне длин волн $0.03 \div 0.102$ мкм применяют приемники оптического излучения в диапазонах значений потока $1 \cdot 10^{-7} \div 1 \cdot 10^{-12}$ Вт и энергетической освещенности $1 \cdot 10^{-3} \div 1 \cdot 10^{-8}$ Вт/м².

В качестве рабочих средств измерений в диапазоне длин волн $0.103 \div 0.4$ мкм применяют приемники (фотометры и дозиметры) и источники оптического излучения в диапазонах значений потока излучения $1 \cdot 10^{-4} \div 1 \cdot 10^{-8}$ Вт и энергетической освещенности $1 \div 10^{-8}$ Вт/м².

3.2. Пределы допускаемых относительных погрешностей рабочих средств измерений Δ_0 в диапазоне длин волн $0.03 \div 0.102$ мкм не должны превышать $6 \cdot 10^{-2}$; в диапазоне длин волн $0.103 \div 0.4$ мкм составляют от $6 \cdot 10^{-2}$ до $15 \cdot 10^{-2}$.

Редактор М. В. Глушкова Технический редактор М. И. Максимова Корректор Б. А. Мурадов

Сдано в наб. 23.11.86 Подп. в печ. 20.01.87 0,5 усл. п. л. 0,5 усл. кр.-отт. 0,31 уч.-изд. л. Тир. 12 000

Срдена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 3097

	Единица						
Величина	Наименование	Обозначен ие					
	namenosanne	международное	русское				
основные единицы си							
Длина	метр	m	M				
Macca	килограмм	kg	Kr				
Время	секунда	s	c				
Сила электрического тока	ампер	A	A				
Термодинамическая температура	кельвин	K	K				
Количество вещества	моль	mol	моль				
Сила света	кандела cd		кд				
ДОПОЛНИТЕ	ЛРНМЕ ЕТ '	, Гини цы си	l				
Плоский угол	радиан	rad	рад				
Телесный угол	стерадиан	sr	ср				

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

	Единица			Выражение через
Величина	Наименова- ние	Обозначение		основные и до-
		родное родное	русское	полнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N :	н	M·KF·C-2
Давление	паскаль	Pa	Па	M-1 - KT - C-2
Энергия	джоуль	J	Дж	M2·KT·C™2
Мощность	ватт	W	Вт	M2 · KT · C-3
Количество электричества	кулон	C	Кл	c·A
Электрическое напряжение	вольт	V	В	M2.KT.C-3.A-1
Электрическая емкость	фарад	F	Ф	W-5KL-1.C4.A2
Электрическое сопротивление	ОМ	Ω	OM	M2·KF·C-3·A-2
Электрическая проводимость	сименс	S	CM	W-3KL-1·C3·A2
Поток магнитной индукции	вебер	Wb	B6	M2 · KF · C-2.A-1
Магнитная индукция	тесла	T	Тл	кг⋅с ⁻² · А ⁻¹
Индуктивность	генри	H	Гн	M2 · KT · C ─2 · A ─2
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	lx	лк	м ⁻² ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bq	Бк	c-1
Поглощенная доза ионизирую-	йєал	Gy	Гр	M ² · C ⁻²
щего излучения Эквивалентная доза излучения	зиверт	Sv	3 e	M² · c ⁻²