

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ТОЛЩИНЫ ПОКРЫТИЙ В ДИАПАЗОНЕ

1+20000 MKM

FOCT 8.536-85

Издание официальное

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

Л. С. Бабаджанов , канд. техн. наук (руководитель темы); **Ю. Н. Николаиш-**вили: В. Н. Филимонова

ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандарта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 6 декабря 1985 г. № 3859

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ ТОЛЩИНЫ ПОКРЫТИЙ В ДИАПАЗОНЕ 1÷20000 мкм

FOCT 8.536—85

State system for ensuring the uniformity of measurements. State verification schedule for means measuring the coating thickness in the range of 1 to 20000 μm

OKCTY 0008

Постановлением Государственного комитета СССР по стандартам от 6 декабря 1985 г. № 3859 срок введения установлен с 01.01.87

Настоящий стандарт распространяется на государственную поверочную схему для средств измерений толщины покрытий в диапазоне $1\div 20000$ мкм и устанавливает назначение установки высшей точности для воспроизведения единицы длины в области измерений толщины покрытий в диапазоне $1\div 30$ мкм, основные метрологические характеристики установки высшей точности и порядок передачи размера единицы длины в области измерений толщины покрытий в диапазоне $1\div 20000$ мкм, при помощи образцовых средств измерений рабочим средствам измерений с указанием погрешностей и основных методов поверки.

1. УСТАНОВКА ВЫСШЕЙ ТОЧНОСТИ

- 1.1. Установка высшей точности предназначена для воспроизведения и хранения единицы длины в области измерений толщины покрытий в диапазоне 1÷30 мкм и передачи размера единицы при помощи образцовых средств измерений рабочим средствам измерений, применяемым в народном хозяйстве с целью обеспечения единства измерений в стране.
- 1.2. В основу измерений толщины покрытий, выполняемых в СССР, должна быть положена единица, воспроизводимая указанной установкой высшей точности.
- 1.3. Установка высшей точности состоит из комплекса следующих средств измерений:

оптический квантовый генератор по ГОСТ 25373-82;

Издание официальное

Перепечатка воспрещена

специальный интерферометр; система обработки информации.

- 1.4. Диапазон значений единицы длины в области измерений толщины покрытий, воспроизводимых установкой высшей точности, составляет $1 \div 30$ мкм.
- 1.5. Установка высшей точности обеспечивает воспроизведение единицы длины в области измерений толщины покрытий со средним квадратическим отклонением результата измерений S, не превышающим $0{,}006$ мкм. Неисключенная систематическая погрешность Θ не превышает $0{,}009$ мкм.

1.6. Для обеспечения воспроизведения единицы длины в области измерений толщины покрытий с указанной точностью должны быть соблюдены правила хранения и применения установки

высшей точности, утвержденные в установленном порядке.

1.7. Установку высшей точности применяют для передачи размера единицы длины в области измерений толщины покрытий образцовым средствам измерений 2-го разряда методом прямых измерений.

2. ОБРАЗЦОВЫЕ СРЕДСТВА ИЗМЕРЕНИЙ

2.1. Образцовые средства измерений, заимст-

вованные из других поверочных схем

2.1.1. В качестве образцовых средств измерений, заимствованных из других поверочных схем, применяют образцовые плоскопараллельные концевые меры длины 1-го разряда по ГОСТ 8.020—75.

2.1.2. Образцовые плоскопараллельные концевые меры длины 1-го разряда применяют для поверки комплекса средств для поверки мер толщины покрытий 1-го разряда и установок для поверки магнитных и вихретоковых толщиномеров диэлектрических покрытий методом прямых измерений.

2.2. Образцовые средства измерений 1-го раз-

ряда

2.2.1. В качестве образцовых средств измерений 1-го разряда применяют комплекс средств для поверки мер толщины покрытий в диапазоне $1\div10000$ мкм, состоящий из комплекта средств для поверки мер толщины покрытий, интерферометра и профилографа.

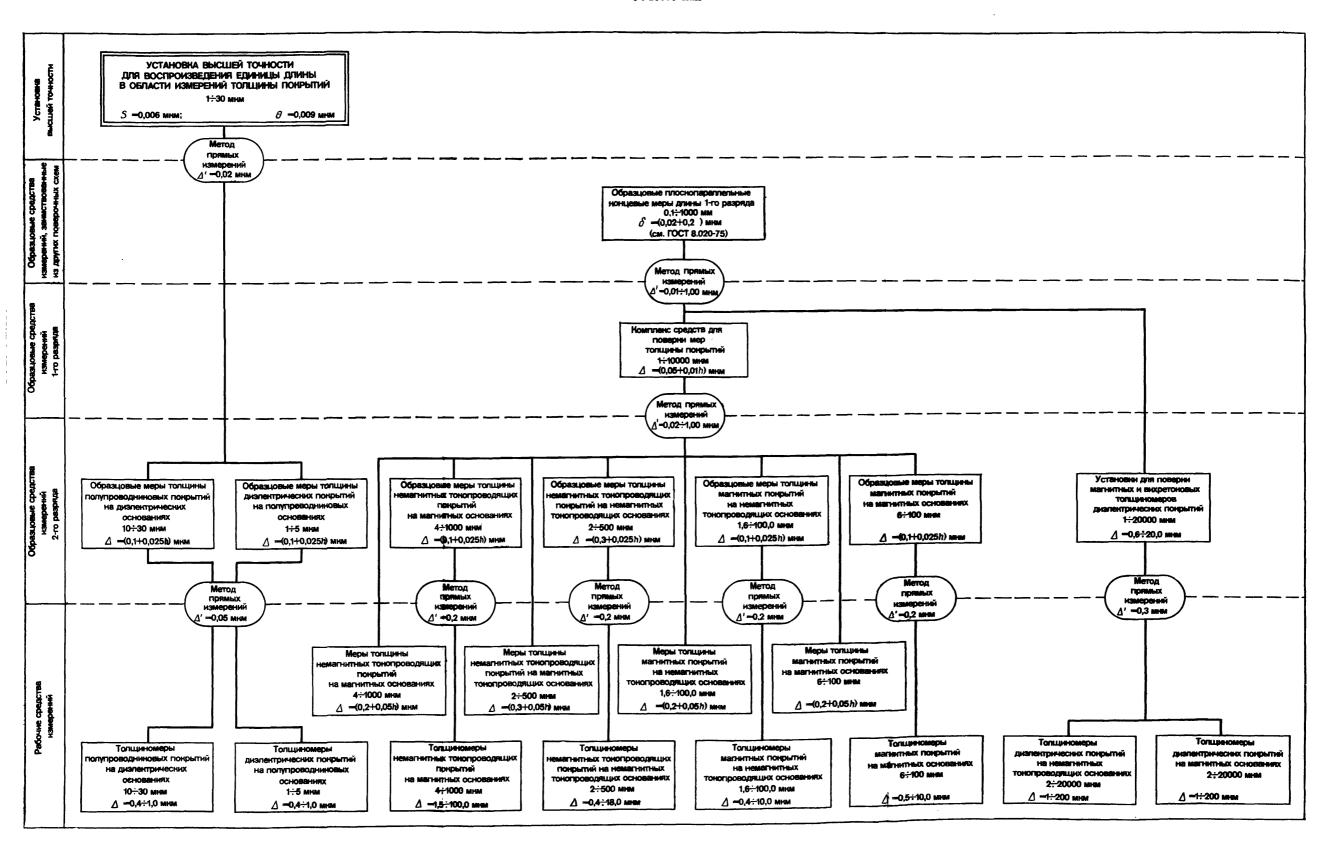
 $\hat{2}.2.2$. Пределы допускаемых абсолютных погрешностей Δ образцовых средств измерений 1-го разряда составляют (0,05 +

+0.01~h) мкм, где h — толщина покрытия в мкм.

2.2.3. Образцовые средства измерений 1-го разряда применяют для поверки образцовых средств измерений 2-го разряда и рабочих мер толщины покрытий методом прямых измерений.

2.3. Образцовые средства измерений 2-го раз-

ряда


2.3.1. В качестве образцовых средств измерений 2-го разряда применяют образцовые меры толщины покрытий в диапазоне 1÷1000 мкм и установки для поверки магнитных и вихретоковых толщиномеров диэлектрических покрытий в диапазоне 1÷20000 мкм.

- 2.3.2. Пределы допускаемых абсолютных погрешностей Δ мер толщины покрытий составляют от $(0.3+0.025\ h)$ до $(0.1+0.025\ h)$ мкм; установок для поверки магнитных и вихретоковых толщиномеров диэлектрических покрытий в диапазоне $0.001\div0.05$ мм 0.6 мкм, в диапазоне $0.05\div2.00$ мм 20 мкм, в диапазоне $2\div20$ мм 20 мкм.
- 2.3.3. Образцовые средства измерений 2-го разряда применяют для поверки рабочих средств измерений методом прямых измерений.

3. РАБОЧИЕ СРЕДСТВА ИЗМЕРЕНИЙ

3.1. В качестве рабочих средств измерений применяют меры толщины покрытий различных сочетаний материалов оснований и покрытий и толщиномеры покрытий, сгруппированные по назначению в зависимости от материалов покрытий и оснований.

3.2. Пределы допускаемых абсолютных погрешностей рабочих средств измерений составляют для мер от $(0,3+0,05\ h)$ до $(0,2+0,05\ h)$ мкм, для толщиномеров покрытий от 0,4 до 200 мкм.

Редактор В. С. Бабкина Технический редактор В. Н. Прусакова Корректор В. Ф. Малютина

Сдано в наб. 24.12.85 Подп. в печ. 03.02.86 0.5 усл. печ. л. +вкл. 0.25 усл. печ. л. 0.18 уч.-изд. л. +вкл. 0.31 уч.-изд. л. +вкл. 0.31 уч.-изд. л. +вкл. +вкл

	Единица					
Величина	Наименование	Обозначение				
	TIGNACIONE	между народ ное	русское			
основные единицы си						
Длина	метр	m	M			
Macca	килограмм	kg	Kľ			
Время	секунда	s	c			
Сила электрического тока	амлер	A	A			
Термодинамическая температура	кельвин	к	K			
Количество вещества	моль	mol	моль			
Сила света	кандела cd		кд			
дополните	Прняе ет	Гиницы си	Ī			
Плоский угол	радиан	rad	рад			
Телесный угол	стерадиан	sr	ср			

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		Единица		
Величина	Наименова- ние	Обозначение		Выражение через основные и до
		междуна- родное	русское	полнительны е единицы СИ
Частота	герц	Hz	Гц	c-t
Сила	ньютон	N	н	M·KГ·C ⁻²
Давление	паскаль	Pa	Па	м ^{—1} · кг · с ^{—2}
Энергия	джоуль	J	Дж	M ² ·KΓ·C ⁻²
Мощность	ватт	W	Вт	M ² ·KΓ·C ^{→3}
Количество электричества	кулон	C	Кл	c·A
Электрическое напряжение	вольт	V	В	м ² ·кг·с ⁻³ · А ⁻¹
Электрическая емкость	фарад	F	Ф	M-2Kr-1 . C 4 . A2
Электрическое сопротивление	ОМ	Ω	OM	M ² ·KΓ·C ⁻³ · A -8
Электрическая проводимость	сименс	S	CM	M-2Kr-1.c3.A2
Поток магнитной индукции	вебер	Wb	B 6	M ² · Kr · C-2·A-1
Магнитная индукция	тесла	T	Тл	·кг·с-2 · A-1
Индуктивность	генри	Н	Гн	M ² ·KΓ·C ⁻² · A ⁻²
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	1 _X	лк	м ^{—2} ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bq	Бк	c-1
Поглощенная доза ионизирую-	йєдз	Gy	Гр	M² · C ²
щего излучения			•	
Эквивалентная доза излучения	зиверт	Sv	3∎	M² · C ²