РЕАКТИВЫ

БАРИЙ ХЛОРИД 2-ВОДНЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Реактивы

БАРИЙ ХЛОРИД 2-ВОДНЫЙ

Технические условия

ΓΟCT 4108—72

Reagents. Barium chloride, 2-aqueous. Specifications

МКС 71.040.30 ОКП 26 2124 0520 06

Дата введения 01.07.73

Настоящий стандарт распространяется на 2-водный хлорид бария.

2-водный хлорид бария представляет собой бесцветные прозрачные кристаллы, растворимые в воде.

Формула $BaCl_2 \cdot 2H_2O$.

Молекулярная масса (по международным атомным массам с 1971 г.) — 244,28.

(Измененная редакция, Изм. № 3).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1а. 2-водный хлорид бария должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Измененная редакция, Изм. № 3).

1.1. По химическим показателям 2-водный хлорид бария должен соответствовать нормам, указанным в таблице.

	Норма		
Наименование показателя	Химически чистый (х. ч.) ОКП 26 2124 0523 03	Чистый для анализа (ч. д. а.) ОКП 26 2124 0522 04	Чистый (ч.) ОКП 26 2124 0521 05
1. Массовая доля 2-водного хлорида бария (BaCl ₂ ·2H ₂ O), %, не менее	99,5	99,5	99,5
2. Массовая доля нерастворимых в воде веществ, $\%$, не более	0,005	0,005	0,01
3. Массовая доля общего азота (N), %, не более	0,001	0,002	0,005
4. Массовая доля хлоратов (ClO ₃), %, не более	0,002	0,002	0,005
5. Массовая доля железа (Fe), %, не более	0,0001	0,0002	0,0005
6. Массовая доля тяжелых металлов (Рв), %, не более	0,0002	0,0004	0,0010
7. Массовая доля калия и натрия $(K + Na)$, %, не более	0,02	0,05	0,10
8. Массовая доля кальция и стронция (Ca + Sr), %, не более	0,02	0,10	0,20
9. рН раствора препарата с массовой долей 5 %	5,0—8,0	5,0—8,0	5,0—8,0
(Измененная редакция, Изм. № 2, 3).			

Издание официальное

Перепечатка воспрещена

© ИПК Издательство стандартов, 1998 © Стандартинформ, 2007

1а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

1а.1. 2-водный хлорид бария токсичен. При попадании на кожу, слизистые оболочки и внутрь организма может вызвать острые и хронические заболевания жизненно важных органов и систем — центральной нервной системы, пищеварительной системы и кожных покровов.

Предельно допустимая концентрация в воздухе рабочей зоны по ГОСТ $12.1.005-0.3~{\rm Mг/m^3},$ класс опасности по ГОСТ $12.1.007-{\rm H}.$

- 1а.2. При работе с препаратом следует применять индивидуальные средства защиты (респираторы, резиновые перчатки, специальную одежду), а также соблюдать правила личной гигиены. Не допускать попадания препарата внутрь организма. При отравлении (через рот) применяют промывание желудка раствором сернокислого натрия или 7-водного сернокислого магния с массовой долей 1 %.
 - 1а.1, 1а.2. (Измененная редакция, Изм. № 3).
- 1а.3. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией, а места наибольшего пыления укрытиями с местной вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

Разд. 1а. (Введен дополнительно, Изм. № 1).

2. ПРАВИЛА ПРИЕМКИ

2.1. Правила приемки — по ГОСТ 3885.

3. МЕТОДЫ АНАЛИЗА

3.1а. Общие указания по проведению анализа — по ГОСТ 27025.

При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200 г и ВЛКТ-500 г-М или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных.

(Измененная редакция, Изм. № 3).

3.1. Пробы отбирают по ГОСТ 3885. Общая масса средней отобранной пробы должна быть не менее $160 \, \mathrm{r}.$

(Измененная редакция, Изм. № 1, 2, 3).

3.2. Определение массовой доли 2-водного хлорида бария

Определение проводят по ГОСТ 10398. При этом около 0,3500 г препарата помещают в коническую колбу вместимостью $250~{\rm cm}^3$, растворяют в $100~{\rm cm}^3$ воды и далее определение проводят по ГОСТ 10398.

(Измененная редакция, Изм. № 3).

3.2.1. Обработка результатов

Массовую долю 2-водного хлорида бария (Х) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0.01221 \cdot 100}{m}$$

где V — объем раствора трилона Б, концентрации точно c (ди-Na-ЭДТА) = 0,05 моль/дм³, израсходованный на титрование, см³;

m — масса навески препарата, г;

0.01221 — масса 2-водного хлорида бария, соответствующая 1 см³ раствора трилона Б, концентрации точно c (ди-Na-ЭДТА) = 0.05 моль/дм³, г.

За результат анализа принимают среднеарифметическое значение двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0.3 %.

Допускаемая абсолютная суммарная погрешность результата анализа \pm 0,5 % при доверительной вероятности P=0,95.

Титрование допускается проводить с индикатором метилтимоловым синим до перехода синей окраски раствора в фиолетово-серую.

(Измененная редакция, Изм. № 2, 3).

3.3. Определение массовой доли нерастворимых в воде веществ

3.3.1. Реактивы, приборы и растворы:

серебро азотнокислое по ГОСТ 1277, раствор с массовой долей около 1,7 %;

стакан B (H)-1—250 TXC по ГОСТ 25336;

тигель фильтрующий типа ТФ ПОР10 или ТФ ПОР16 по ГОСТ 25336;

вода дистиллированная по ГОСТ 6709.

3.3.2. Проведение анализа

20,00 г препарата помещают в стакан и растворяют при нагревании в 100 см³ воды. Стакан с раствором накрывают часовым стеклом и выдерживают в течение 1 ч на водяной бане. Затем раствор фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы при 105—110 °C и взвешенный (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака).

Остаток на фильтре промывают горячей водой до исчезновения реакции на ион Cl (проба с раствором азотнокислого серебра) и сушат в сушильном шкафу при 105—110 °C до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

для препарата химически чистый -1 мг;

для препарата чистый для анализа — 1 мг;

для препарата чистый — 2 мг.

Допускаемая относительная суммарная погрешность результата анализа \pm 45 % для препарата «химически чистый» и «чистый для анализа» и \pm 35 % для препарата «чистый» при доверительной вероятности P=0.95.

3.4. Определение массовой доли общего азота

Определение проводят по ГОСТ 10671.4. При этом 2,00 г препарата квалификации «химически чистый» или 1,00 г препарата квалификации «чистый для анализа» и «чистый» помещают в круглодонную колбу прибора для отделения аммиака дистилляцией и растворяют в 150 см³ воды. Далее определение проводят визуально-колориметрическим (препараты «чистый для анализа» и «чистый») или фотометрическим методом.

Препарат считают соответствующим требованиям настоящего стандарта, если масса общего азота не будет превышать:

для препарата химически чистый — 0.02 мг;

для препарата чистый для анализа — 0.02 мг;

для препарата чистый — 0,05 мг.

При разногласиях в оценке массовой доля общего азота анализ проводят фотометрическим методом.

3.3.1—3.4. (Измененная редакция, Изм. № 2, 3).

3.5. Определение массовой доли хлоратов

3.5.1. Реактивы, растворы и посуда

калий йодистый по ГОСТ 4232, раствор с массовой долей 2 %, свежеприготовленный; кислота соляная по ГОСТ 3118, раствор с массовой долей 25 %;

раствор, содержащий ClO₃; готовят по ГОСТ 4212 из технической бертолетовой соли по ГОСТ 2713; соответствующим разбавлением готовят раствор, содержащий 0,01 мг/см³ ClO₃;

вода дистиллированная по ГОСТ 6709;

пробирка стеклянная П4-50-29/32 ХС ГОСТ 25336;

пипетка вместимостью 5(10) см3;

цилиндр 1(3)-25 по ГОСТ 1770.

(Измененная редакция, Изм. № 2, 3).

3.5.2. Проведение анализа

1 г препарата взвешивают с погрешностью не более 0,01 г, помещают в пробирку с притертой пробкой вместимостью $50~{\rm cm}^3$ и растворяют в $13~{\rm cm}^3$ воды. К раствору прибавляют $10~{\rm cm}^3$ раствора соляной кислоты, $2~{\rm cm}^3$ раствора йодистого калия и перемешивают. Пробирку помещают в стакан с кипящей водой и нагревают в течение $5~{\rm mu}$ н.

Препарат считают соответствующим требованиям настоящего стандарта, если наблюдаемая окраска анализируемого раствора не будет интенсивнее окраски эталонного раствора, приготовленного одновременно с анализируемым таким же образом и содержащего в таком же объеме:

для препарата химически чистый — 0.02 мг ClO_3 ;

для препарата чистый для анализа — 0.02 мг ClO_3 ;

для препарата чистый — 0.05 мг ClO_3 ,

10 см³ раствора соляной кислоты и 2 см³ раствора йодистого калия.

3.6. Определение массовой доли железа

(Измененная редакция, Изм. № 2).

3.6.1. Роданидный метод

Определение проводят по ГОСТ 10555 с предварительным окислением железа азотной кислотой. При этом $5{,}00$ г препарата помещают в коническую колбу или стакан вместимостью $50{-}100~{\rm cm}^3$, растворяют в $25~{\rm cm}^3$ воды, прибавляют $0{,}25~{\rm cm}^3$ концентрированной азотной кислоты, $3~{\rm cm}^3$ раствора соляной кислоты, перемешивают и кипятят в течение $2{-}3$ мин. Далее определение проводят по ГОСТ 10555.

Допускается заканчивать определение визуально.

При необходимости в результат анализа вносят поправку на массу железа в применяемых реактивах, определяемую контрольным опытом.

(Измененная редакция, Изм. № 3).

3.6.2. 2,2'-дипиридиловый метод

Определение проводят по ГОСТ 10555. При этом подготовку препарата к анализу проводят, как указано в п. 3.6.1, но без прибавления азотной кислоты. Заканчивают определение фотометрически или визуально.

3.6.3. Препарат считают соответствующим требованиям настоящего стандарта, если масса железа не будет превышать:

для препарата химически чистый — 0.005 мг;

для препарата чистый для анализа — 0.010 мг;

для препарата чистый — 0,025 мг.

При разногласиях в оценке массовой доли железа определение проводят фотометрически 2,2'-дипиридиловым методом.

3.6.1—3.6.3. (Введены дополнительно, Изм. № 2).

3.7. Определение массовой доли тяжелых металлов проводят по ГОСТ 17319. При этом 5,00 г препарата помещают в коническую колбу с пришлифованной пробкой вместимостью 100 см³, растворяют в 30 см³ воды и далее определение проводят сероводородным методом.

Препарат считают соответствующим требованиям настоящего стандарта, если окраска анализируемого раствора не будет интенсивнее окраски раствора, приготовленного одновременно с анализируемым и содержащего в таком же объеме:

для препарата химически чистый — 0.010 мг Pb;

для препарата чистый для анализа — 0,020 мг Рb;

для препарата чистый — 0.050 мг Pb,

 $1~{\rm cm}^3$ уксусной кислоты, $1~{\rm cm}^3$ раствора уксуснокислого аммония и $10~{\rm cm}^3$ сероводородной воды.

(Измененная редакция, Изм. № 1, 2, 3).

3.8. Определение массовой доли калия, натрия, кальция и стронция проводят пламенно-фотометрическим методом по ГОСТ 26726. При этом для препарата квалификации «чистый» и «чистый для анализа» готовят растворы сравнения с массовой долей калия и натрия 0,05; 0,10 и 0,15 %.

За результат анализа принимают среднеарифметическое значение результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 25 %.

Допускаемая относительная суммарная погрешность результата анализа \pm 15 % при доверительной вероятности 0,95.

3.9. Определение рН раствора препарата с массовой долей 5 %

5,00 г препарата помещают в коническую колбу вместимостью 250 см³ (ГОСТ 25336), растворяют в 95 см³ дистиллированной воды, не содержащей углекислоты (готовят по ГОСТ 4517), и измеряют рH раствора на универсальном иономере со стеклянным электродом.

Допускаемая абсолютная суммарная погрешность результата анализа ± 0.1 pH при доверительной вероятности P = 0.95.

3.8, 3.9. (Измененная редакция, Изм. № 3).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2—1, 2—2, 2—4, 2—9, 6—1, 11—1.

Группа фасовки: III, IV, V, VI, VII.

На тару наносят знаки опасности по ГОСТ 19433 (классификационный шифр 6163, класс 6, подкласс 6.1, черт. 66) и серийный номер OOH - 1564.

(Измененная редакция, Изм. № 2, 3).

4.2. Препарат транспортируют всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

(Измененная редакция, Изм. № 1).

4.3. Препарат хранят в закрытой таре в крытых складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Изготовитель гарантирует соответствие 2-водного хлористого бария требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

(Измененная редакция, Изм. № 2, 3).

5.2. Гарантийный срок хранения препарата — три года со дня изготовления.

(Измененная редакция, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

РАЗРАБОТЧИКИ:

- Р.П. Ластовский, В.Г. Брудзь, И.Л. Ротенберг, Е.Н. Яковлева, В.А. Раковская, З.М. Ривина, Л.З. Климова, Т.М. Сас
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 13.04.72 № 746
- 3. B3AMEH ΓΟCT 4108-65
- 4. СОДЕРЖИТ ВСЕ ТРЕБОВАНИЯ СТ СЭВ 3859-82
- 5. В стандарт введен МС ИСО 6353-2-83 (Р.6) в части квалификации х. ч.
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 12.1.005—88 FOCT 12.1.007—76 FOCT 1277—75 FOCT 1770—74 FOCT 2713—74 FOCT 3118—77 FOCT 3885—73 FOCT 4212—76 FOCT 4232—74 FOCT 4517—87	1a.1 1a.1 3.3.1 3.5.1 3.5.1 3.5.1 2.1, 3.1, 4.1 3.5.1 3.5.1 3.9	ГОСТ 6709—72 ГОСТ 10398—76 ГОСТ 10555—75 ГОСТ 10671.4—74 ГОСТ 17319—76 ГОСТ 19433—88 ГОСТ 25336—82 ГОСТ 26726—85 ГОСТ 27025—86	3.3.1, 3.5.1 3.2 3.6.1, 3.6.2 3.4 3.7 4.1 3.3.1, 3.5.1, 3.9 3.8 3.1a

- 7. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 8. ИЗДАНИЕ (август 2007 г.) с Изменениями № 1, 2, 3, утвержденными в феврале 1980 г., декабре 1983 г., июне 1990 г. (ИУС 3-80, 4-84, 9-90)

Редактор Л.И. Нахимова Технический редактор Н.С. Гришанова Корректор А.С. Черноусова Компьютерная верстка И.А. Налейкиной

Подписано в печать 04.09.2007. Формат $60 \times 84^{-1}/8$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,65. Тираж 43 экз. Зак. 705