КОНПЕНТРАТ БАРИТОВЫЙ

Фотометрический метод определения двуокиси кремния

Barite concentrate.

Photometric method for determination of silicon dioxide

Дата введения 1997—01—01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на баритовые концентраты и устанавливает фотометрический метод определения двуокиси кремния от 0.5 до 5 %.

Метод основан на образовании окрашенного в синий цвет восстановленного кремнемолибденового комплексного соединения и измерении его сптической плотности в области длин волн 600—650 нм.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие нормативно-технические документы:

ГОСТ 61-75 Кислота уксусная. Технические условия

ГОСТ 83—79 Натрий углекислый безводный. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3765—78 Аммоний молибденовокислый. Технические условия

ГОСТ 4199—76 Натрий тетраборнокислый 10-водный. Технические условия

ГОСТ 4204—77 Кислота серная. Технические условия

ГОСТ 4221—76 Калий углекислый. Технические условия

ГОСТ 5817—77 Кислота винная. Технические условия

ГОСТ 6563—75 Изделия технические из благородных металлов и сплавов. Технические условия

ГОСТ 11293-89 Желатин. Технические условия

ТУ 6-09-1678-86 Фильтры обеззоленные

ТУ 6—09—5337—87 Натрий кремнекислый мета, 9-водный. Технические условия.

3 ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа и требования безопасности — по ГОСТ 30240.0.

4 АППАРАТУРА. РЕАКТИВЫ И РАСТВОРЫ

Фотоэлектроколориметр или спектрофотометр.

Электропечь муфельная, обеспечивающая температуру нагрева 1000 °C.

Тигли платиновые по ГОСТ 6563.

Фильтры бумажные обеззоленные «синяя лента», «белая лента» по ТУ 6—09—1678.

Кислота серная по ГОСТ 4204, раствор $c (^{1}/_{2} \text{ H}_{2}\text{SO}_{4}) = 0.25 \text{ моль/}/\text{дм}^{3} (0.25 \text{ н}).$

Кислота соляная по ГОСТ 3118 и разбавленная 1:1 и 1:3.

Кислота уксусная по ГОСТ 61, разбавленная 1:1.

Кислота аскорбиновая.

Кислота винная по ГОСТ 5817.

Смесь восстановительная: 15,0 г винной и 1,0 г аскорбиновой кислот растворяют в 100 см^3 воды.

Натрий углекислый по ГОСТ 83.

Калий углекислый по ГОСТ 4221.

Натрий тетраборнокислый 10-водный по ГОСТ 4199, прокаленный при 400 °C.

Смесь для сплавления: натрий улекислый, калий углекислый и натрий тетраборнокислый смешивают в отношении 1:1:1.

Желатин пищевой по ГОСТ 11293, раствор с массовой долей 1 %, свежеприготовленный.

Аммоний молибденовокислый по ГОСТ 3765, раствор с массовой долей 5 %: 5 г соли растворяют при нагревании (не кипятят) в $60~{\rm cm}^3$ воды, охлаждают, фильтруют через плотный фильтр «синяя

лента», прибавляют $10 \, \text{cm}^3$ уксусной кислоты, разбавляют водой до $100 \, \text{cm}^3$ и перемешивают.

Натрий кремнекислый мета, 9-водный по ТУ 6-09-5337.

Стандартные растворы двуокиси кремния.

Раствор А, содержащий около 1 мг/см³ двуокиси кремния: 4,730 г кремнекислого натрия растворяют в воде, переносят в мерную колбу вместимостью 1000 см³, разбавляют водой до метки и перемешивают. Раствор хранят в полиэтиленовом сосуде.

Для определения концентрации двуокиси кремния отбирают пипеткой 50,0 см³ раствора в стакан вместимостью 250 см³, приливают 15 см³ соляной кислоты и выпаривают до влажного остатка. Прибавляют 5 см³ соляной кислоты 1:1, 10 см³ раствора желатина, 20 см³ горячей воды, перемешивают и оставляют при 50—60 °C на 30 мин для коагуляции осадка. Раствор с осадком фильтруют на фильтр средней плотности «белая лента» и промывают 8—10 раз горячей водой. Фильтр с осадком помещают во взвешенный платиновый тигель, озоляют и прокаливают в муфельной печи при 1000 °C в течение 1 ч. Тигель с осадком охлаждают в эксикаторе и взвешивают.

Концентрацию двуокиси кремния в растворе А X, мг/см³, вычисляют по формуле

$$X = \frac{m}{V}, \tag{1}$$

где т — масса прокаленного осадка двуокиси кремния, мг:

V — объем аликвотной части раствора, см 3 .

Раствор Б, содержащий около 0,025 мг/см³ двуокиси кремния: 25,0 см³ раствора А переносят в мерную колбу вместимостью 1000 см³, разбавляют водой до метки и перемешивают.

Раствор переносят в полиэтиленовый сосуд; готовят в день применения.

Концентрацию двуокиси кремния в растворе Б X_1 , мг/см³, вычисляют по формуле

$$X_{i} = \frac{X \cdot 25}{1000} \,. \tag{2}$$

5 ПРОВЕДЕНИЕ АНАЛИЗА

5.1 Навеску баритового концентрата массон 0,2000 г помещают в платиновыи тигель, перемешивают с 3 г смеси для сплавления и сплавляют в муфельной печи при 700—800 °С в течение 15—20 мин.

Остывший тигель с плавом помещают в стакан вместимостью 250 см³, приливают 60 см³ раствора соляной кислоты 1:3 и нагревают до полного выщелачивания плава. Раствор охлаждают, персносят в мерную колбу вместимостью 250 см³, разбавляют водой до метки, персмешивают и фильтруют через двоинои фильтр средней плотности «белая лента»; первые порции фильтрата отбрасывают.

Таблица 1

Массовая доля двуокиси кречния, %	Объем аликвотной части раствора, см ³	
От 0,5 до 1,0 включ.	10,0	
Св. 1,0 » 3,0 »	5,0	
» 3,0	2,0	

Аликвотную часть 2,0—10,0 см³, взятую в зависимости от массовой доли двуокиси кремния в соответствии с таблицей 1, помещают в мерную колбу вместимостью 100 см³, прибавляют 50 см³ раствора серной кислоты, 10,0 см³ раствора молибденовокислого аммония, перемешивая после прибавления каждого реактива. Через 20 мин приливают 10,0 см³ раствора восстановительной смеси, разбавляют водой до метки и перемешивают.

Одновременно проводят контрольный опыт в тех же условиях и с тем же количеством реактивов, но без анализируемого продукта.

Через 30 мин измеряют оптическую плотность растворов по отношению к раствору контрольного опыта в области длин волн 600—650 нм в кювете с толщиной поглощающего свет слоя 20 мм.

Массу двуокиси кремния в растворе находят по градуировочному графику.

5.2 Для построения градуировочного графика в восемь из девяти мерных колб вместимостью 100 см³ отмеривают пипеткой 1,0; 2,0, 3,0; 4,0, 5,0; 6,0; 7,0; 8,0 см³ раствора Б двуокиси кремния, прибавляют 50 см³ раствора сернои кислоты и далее продолжают, как описано в 5.1.

Приготовление растворов для построения градуировочного графика и измерение их оптической плотности выполняют дважды. По полученным средним арифметическим значениям оптических плотностей и соответствующим им содержаниям двуокиси кремния строят градуировочный график.

6 ОБРАБОТКА РЕЗУЛЬТАТОВ

6.1 Массовую долю двуокиси кремния X, %, вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{V_1 \cdot m \cdot 1000}, \tag{3}$$

где m_1 — масса двуокиси кремния, найденная по градуировочному графику, мг;

V — объем мерной колбы для разбавления, см 3 ;

 V_1 — объем аликвотной части раствора, взятый для анализа, см³:

т — масса навески пробы, г.

- 6.2 Расхождения результатов параллельных определений d (разность большего и меньшего результатов параллельных определений) и результатов анализа D (разность большего и меньшего результатов анализа) при доверительной вероятности P=0,95 не должны превышать абсолютных допускаемых расхождений, приведенных в таблице 2.
- 6.3 Контроль точности анализа осуществляют с помощью стандартных образцов или другими методами, предусмотренными ГОСТ 30240.0.
- 6.4 Погрешность результатов анализа (при доверительной вероятности P = 0.95) не должна превышать предела Δ при выполнении условий 6.2 и положительных результатах контроля точности анализа по 6.3 (таблица 2).

Таблица 2

В процентах

Массовая доля двуокиси кремния	Δ	đ	D
0,50	0.07	0,08	0,10
1,00	0,09	0.09	0,12
2,00	0,11	0,11	0,15
3,00	0,13	0,14	0,18
4,00	0,15	0,16	0,22
5,00	0,19	0,20	0,26

Значения Δ , d, D для промежуточных массовых долей находят методом линейной интерполяции.

УДК 622.368.98—15:546.284—31.06:006.354 ОКСТУ 2141 OKC 73.060

A39

Ключевые слова: концентрат баритовый, методы анализа, двуокись кремния, фотометрический метод