3EPHO

МЕТОДЫ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ (СТЕПЕНИ ДЕСТРУКЦИИ) КРАХМАЛА

Издание официальное

УДК 633.1.001.4:006.354 Группа С19

межгосударственный стандарт

3EPHO

Методы определения состояния (степени деструкции) крахмала

ГОСТ 29177—91

Grain.

Methods of determining the destruction grade of starch

МКС 67.060 ОКСТУ 9809

Дата введения 01.01.93

Стандарт распространяется на необработанное зерно, а также на зерно, подвергнутое различным способам гидротермической обработки (микронизация, экструдирование, поджаривание и т.п.), и устанавливает метод определения деструкции крахмала.

1. ОТБОР ПРОБ

Отбор проб — по ГОСТ 13586.3.

2. ОПРЕДЕЛЕНИЕ СТЕПЕНИ ДЕСТРУКЦИИ КРАХМАЛА (Основной метод)

Сущность метода заключается в определении степени гидролиза углеводного комплекса зерна с помощью фермента глюкоамилазы и определении глюкозы, получаемой в результате деструкции крахмала.

2.1. Аппаратура, материалы и реактивы

Весы лабораторные общего назначения по ГОСТ 24104* 2-го класса точности с допускаемой погрешностью взвешивания $\pm 0,01$ г.

Мельница лабораторная электрическая.

Термостат биологический.

Плитка электрическая.

Пипетки исполнения 2; 2-го класса точности, вместимостью 1 см³, 5 см³, 20 см³ по ГОСТ 29227. Пипетки градуированные по ГОСТ 29227 исполнений 1, 4, 7.

Колбы мерные исполнений 1, 2; вместимостью 100 см^3 , 1000 см^3 2-го класса точности по ГОСТ 1770.

Стаканы химические по ГОСТ 25336.

Цилиндры исполнения 1 вместимостью 100, 250, 500 см³ по ГОСТ 1770.

Колбы мерные.

Колбы конические вместимостью 150 см³ по ГОСТ 25336.

Сито с отверстиями диаметром 1 мм.

Бюретки для титрования, исполнения 1 и 3, 2-го класса точности с ценой деления $0,1~{\rm cm}^3$ по ГОСТ 29251.

Воронки стеклянные для фильтрования по ГОСТ 25336.

Часы сигнальные или песочные на 3 мин.

Фильтры бумажные.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1992

© ИПК Издательство стандартов, 2004

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001.

Бумага фильтровальная по ГОСТ 12026.

Кислота серная по ГОСТ 4204, х.ч. или ч.д.а.

Гидроокись натрия по ГОСТ 4328.

Калий-натрий виннокислый по ГОСТ 5845, х.ч.

Гипосульфит натрия, раствор массовой концентрации 0,1 моль/дм³.

Натрий уксуснокислый по ГОСТ 2080.

Натрий углекислый по ГОСТ 83.

Кислота уксусная ледяная по ГОСТ 61, раствор массовой концентрации 1 моль/дм³.

Калий двухромовокислый по ГОСТ 4220, раствор массовой концентрации 0,1 моль/дм³.

Калий йодистый по ГОСТ 4232, раствор с массовой долей 30 %.

Медь сернокислая по ГОСТ 4165.

Препарат ферментный глюкоамилазы очищенный по ТУ 64—13—18.

Крахмал растворимый по ГОСТ 10163.

Вода дистиллированная по ГОСТ 6709.

2.2. Подготовка к испытанию

2.2.1. Подготовка пробы

Среднюю пробу испытуемого продукта измельчают на лабораторной мельнице и просеивают через сито с отверстиями диаметром 1 мм. Частицы, оставшиеся на сите в количестве до 1 %, удаляют.

2.2.2. Приготовление раствора сернокислой меди (раствор Фелинга 1)

Навеску сернокислой меди массой 40 г переносят в мерную колбу вместимостью 1000 см³, растворяют в дистиллированной воде и доводят объем дистиллированной водой до метки.

2.2.3. Приготовление щелочного раствора виннокислого калия-натрия (раствор Фелинга 2)

200 г виннокислого калия-натрия и 150 г гидроокиси натрия растворяют примерно в 400 см³ дистиллированной воды в мерной колбе вместимостью 1000 см³. После охлаждения раствора объем его доводят дистиллированной водой до 1000 см³.

2.2.4. Приготовление раствора крахмала с массовой долей 1 %

Навеску растворимого крахмала массой 1 г помещают в мерную колбу вместимостью 100 см³, добавляют 25 см³ дистиллированной воды и тщательно перемешивают. Затем в колбу добавляют еще 25 см³ дистиллированной воды, помещают колбу в кипящую водяную баню и, непрерывно перемешивая, выдерживают до полного растворения крахмала. Затем колбу охлаждают до комнатной температуры и объем доводят дистиллированной водой до метки, после чего содержимое колбы перемешивают стеклянной палочкой.

Раствор крахмала готовят в день проведения анализа.

2.2.5. Приготовление раствора гипосульфита натрия массовой концентрации 0,1 моль/дм³

Для приготовления раствора гипосульфита натрия массовой концентрации 0,1 моль/дм³ и установления его титра 25 г соли растворяют в 1 дм³ дистиллированной воды, к полученному раствору прибавляют 0,1 г углекислого натрия, оставляют стоять в течение суток и устанавливают титр по 0,1 моль/дм³ раствора двухромовокислого калия (4,9036 г двухромового кислого калия растворяют в 1 дм³ воды).

Для установления титра раствора гипосульфита в колбу с притертой пробкой приливают точно 20 см³ 0,1 моль/дм³ раствора двухромовокислого калия, доливают водой до 100 см³, прибавляют при помешивании 4 см³ концентрированной серной кислоты и 4 см³ раствора йодистого калия с массовой долей 30 %. Колбу закрывают пробкой и оставляют в темном месте на 2—3 мин, затем титруют раствором гипосульфита натрия, все время интенсивно перемешивая жидкость, пока коричневый цвет раствора не перейдет в светло-желтый, прибавляют 1 см³ 1%-ного раствора крахмала и продолжают титрование до исчезновения синей окраски и перехода ее в зеленоватую.

Поправочный коэффициент (K) к точно 0,1 моль/дм³ раствора гипосульфита определяют по формуле

$$K=\frac{20}{V}$$
,

где V— объем гипосульфита натрия, израсходованный на титрование, см³.

2.2.6. Приготовление раствора серной кислоты с плотностью 1,14 г/см³

В колбу вместимостью 1000 см³ наливают 500 см³ дистиллированной воды, туда же осторожно добавляют 228,9 г концентрированной серной кислоты плотностью 1,84 г/см³. После охлаждения до

комнатной температуры раствор доводят дистиллированной водой до метки и перемешивают. Плотность полученного раствора должна составлять $1,14 \text{ г/см}^3$.

2.2.7. Приготовление ацетатного буфера с pH = 4,7-5,0

Для приготовления ацетатного буфера берут раствор ледяной уксусной кислоты массовой концентрации 1 моль/дм 3 (60,12 г уксусной кислоты на 1 дм 3 воды) и уксуснокислого натрия (136,09 г уксуснокислого натрия на 1 дм 3).

Ацетатную буферную смесь готовят смешиванием указанных растворов в соотношении от 1:1 до 1:2 соответственно значениям рН 4.7—5.0.

2.2.8. Приготовление раствора ферментного препарата глюкоамилазы

Навеску ферментного препарата очищенной глюкоамилазы массой 1 г при глюкоамилазной активности препарата (ГлА) 1000 Ед на 1 г или 0,5 г при активности препарата 2000 ГлА на 1 г помещают в стеклянный стаканчик вместимостью 25 — 30 см³. Туда же добавляют небольшое количество дистиллированной воды и тщательно растирают стеклянной палочкой до получения однородной массы. Полученную массу количественно переносят в мерную колбу вместимостью 100 см³, доводят дистиллированной водой до метки, перемешивают и, при необходимости, фильтруют через стеклянную воронку с бумажным фильтром. 1 см³ раствора ферментного препарата имеет глюкоамилазную активность 10 Ед. При необходимости активность препарата глюкоамилазы проверяют по ГОСТ 20264.4.

Раствор ферментного препарата хранят не более суток при температуре от плюс 2 до минус 4 $^{\circ}$ C.

2.3. Проведение испытания

Навеску испытуемой пробы массой 1 г помещают в коническую колбу вместимостью 100 см³. Затем приливают 25 см³ дистиллированной воды температурой 37 °C, 3 см³ ацетатного буфера и 2 см³ раствора ферментного препарата. Колбы выдерживают в биологическом термостате 1 ч при 37 °C, периодически, примерно через 15 мин, перемешивая их содержимое. После этого отбирают 10 см³ недосадочной жидкости и переносят в коническую колбу, куда предварительно наливают 10 см³ раствора Фелинга 1 и 10 см³ раствора Фелинга 2. Полученную смесь нагревают до кипения на электроплитке или газовой горелке и кипятят 3 мин, при этом выпадает осадок закиси меди красно-бурого цвета. После охлаждения до комнатной температуры в колбу с осадком вносят 20 см³ раствора серной кислоты, приготовленной по п. 2.2.6, и 2 г йодистого калия.

Выделившийся свободный йод быстро оттитровывают раствором гипосульфита натрия, приготовленного по п. 2.2.5, до кофейной окраски, после чего вносят 1 см³ раствора растворимого крахмала и снова титруют до молочно-белой окраски.

Параллельно опыту ставят контрольный опыт, в котором вместо недосадочной жидкости берут $10~{\rm cm}^3$ дистиллированной воды, остальные операции проводят в той же последовательности, что и для опытной пробы.

2.4. Обработка результатов

Количество глюкозы (X) в миллиграммах в 1 г сухого вещества анализируемой пробы вычисляют по формуле

$$X = \frac{(N_{\rm K} - N_{\rm o}) \cdot 30 \cdot 3.3 \cdot K}{10 \cdot (1 - W)}$$

где $N_{\rm K}$ — объем гипосульфита натрия, израсходованный на титрование контрольной пробы, см³;

 N_0 — объем гипосульфита натрия, израсходованный на титрование опытной пробы, см³;

30 — объем исходной суспензии в колбе, см³;

3,3 — коэффициент пересчета 0,1 моль/дм³ раствора гипосульфита натрия на глюкозу, установленный экспериментальным путем;

K — поправочный коэффициент к титру гипосульфита натрия;

10 — количество гидролизата, израсходованное на анализ;

W — массовая доля влаги в анализируемой пробе, г.

Вычисления проводят до первого десятичного знака с последующим округлением до целого числа.

За окончательный результат испытания принимают среднеарифметическое значение результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 10 % от среднеарифметического результата.

3. ОПРЕДЕЛЕНИЕ СТЕПЕНИ ДЕСТРУКЦИИ КРАХМАЛА МЕТОДОМ ОЦЕНКИ СОСТОЯНИЯ КРАХМАЛА НА ПРИБОРЕ ДЛЯ ОПРЕДЕЛЕНИЯ ЧИСЛА ПАДЕНИЯ

(Экспрессный метод)

Сущность метода заключается в быстрой клейстеризации водяной суспензии размолотого зерна на кипящей водяной бане и последующем определении степени разжижения амилазами крахмала, содержащегося в пробе, по числу падения, выражающемуся периодом времени с момента погружения вискозиметрической пробирки в кипящую воду, необходимым для падения мешалки вискозиметра с определенной высоты через водную суспензию, полученную из размолотого зерна и находящуюся в вискозиметрической пробирке в состоянии разжижения.

3.1. Аппаратура, материалы и реактивы

Прибор для определения числа падения.

Пробирки вискозиметрические с внутренним диаметром $(21,00\pm0,02)$ мм, наружным диаметром $(23,80\pm0,3)$ мм.

Пробки резиновые № 22 для вискозиметрических пробирок.

Весы лабораторные общего назначения 2-го класса точности с допускаемой погрешностью взвешивания ± 0.01 г.

Мельница лабораторная электрическая.

Пипетки исполнения 2, 2-го класса точности вместимостью 1 и 25 см³ по НТД.

Цилиндр исполнения 1 вместимостью 100 см³ по ГОСТ 1770.

Колбы конические вместимостью 150 см³ по ГОСТ 25336.

Сито с отверстиями диаметром 1 мм.

Плитка электрическая или горелка газовая.

Ножницы.

Палочки стеклянные длиной 13—20 см³.

Бумага индикаторная лакмусовая или универсальная.

Вода дистиллированная по ГОСТ 6709.

Ферментные препараты: амилосубтилин (α-амилаза) по ГОСТ 23635 и глюкоамилаза очищенная по ТУ 64.13.18.

 Π р и м е ч а н и е. Допускается использовать импортную аппаратуру, мерную посуду или другие средства измерений, имеющие такие же или более высокие метрологические характеристики.

3.2. Подготовка к испытанию

3.2.1. Подготовка пробы

Среднюю пробу испытуемого продукта измельчают на лабораторной мельнице и просеивают через сито с отверстиями диаметром 1 мм.

Частицы, оставшиеся на сите в количестве до 1 %, удаляют.

3.2.2. Приготовление раствора ферментных препаратов

Для приготовления растворов амилазы (Ас) и глюкоамилазы (ГлА) используют ферментные препараты из расчета содержания в 1 см³ раствора 0,8 Ед Ас и 10 Ед ГлА.

Расчет для взятия навесок ферментов проводят следующим образом.

Например, согласно качественным удостоверениям активность препарата α -амилазы составляет 600 Ед Ac на 1 г препарата, а активность глюкоамилазы — 1000 Ед ГлА на 1 г препарата.

Исходя из этого для приготовления рабочего раствора ферментных препаратов 133 мг препарата α -амилазы и 1 г препарата глюкоамилазы растворяют поочередно, начиная с глюкоамилазы, в 100 см³ дистиллированной воды при температуре 55 °C и pH 4,7—5,0 и охлаждают до комнатной температуры.

3.3. Проведение испытания

Навеску размолотого зерна помещают в вискозиметрическую пробирку прибора для определения числа падения. Массу навески устанавливают по таблице, учитывая значения влажности продукта (см. приложение).

Затем в пробирку наливают пипеткой 1 см³ рабочего раствора ферментных препаратов, приготовленного по п. 3.2.2, и дистиллированную воду в количестве, указанном в таблице. Пробирку закрывают резиновой пробкой и энергично встряхивают не менее 20 раз до получения однородной суспензии.

В случае затруднения в получении однородной суспензии пробку вынимают и перемешивают

содержимое пробирки стеклянной палочкой. Затем колесиком шток-мешалки перемещают прилипшие частицы продукта со стенок в общую массу суспензии. Все операции по подготовке суспензии проводят в течение 60—90 с.

Для определения числа падения пробирку с суспензией помещают в отверстие в крышке кипящей водяной бани прибора, закрепив ее держателем таким образом, чтобы фотоэлемент прибора находился против шток-мешалки. В то же время автоматически включается счетчик времени. Через 5 с после погружения пробирки в водяную баню автоматически начинает работать шток-мешалка, которая перемешивает суспензию в пробирке. Через 60 с шток-мешалка автоматически останавливается в верхнем положении, затем начинается ее свободное падение. После полного опускания шток-мешалки счетчик автоматически останавливается.

По счетчику определяют число падения (X) — время в секундах с момента погружения пробирки с суспензией в водяную баню до момента полного опускания шток-мешалки.

3.4. Обработка результатов

За окончательный результат испытания принимают среднеарифметическое значение результатов двух параллельных определений.

Вычисление проводят до первого десятичного знака с последующим округлением результата до целого числа.

Допускаемые расхождения между результатами параллельных определений (d) и между результатами, полученными в разных условиях (D), в секундах, при двусторонней доверительной вероятности P=0.95 не должны превышать следующих значений

$$d = -1.6 + 0.138\overline{X}$$
;

$$D = -1.9 + 0.2\overset{=}{X},$$

где X— среднеарифметическое значение результатов двух параллельных определений, с;

 $ar{X}$ — среднеарифметическое значение результатов двух испытаний, выполненных в разных условиях. с.

Пример. Результаты испытания по первой навеске — 68 с, по второй — 73 с. Среднеарифметическое значение — 70,5 с. Допускаемое расхождение от этого среднего арифметического значения составляет 8.1 с.

Фактическое расхождение между результатами испытания двух навесок составляет 5 с, что не превышает допускаемого расхождения между ними.

ПРИЛОЖЕНИЕ Справочное

Табличные данные для определения массы навески и воды в зависимости от влажности продукта

Влажность пробы, %	Масса навески, г	Общее количество воды с ферментным раствором на пробу, см ³
2,0—2,3 2,4—2,6 2,7—2,9 3,0—3,2 3,3—3,5	6,89 6,92 6,94 6,96 6,98	26,8
3,6—3,8 3,9—4,1 4,2—4,4 4,5—4,7 4,8—5,0	7,00 7,03 7,05 7,07 7,09	26,7
5,1—5,3 5,4—5,6 5,7—5,9 6,0—6,2	7,12 7,14 7,16 7,19	26,6
6,3—6,5 6,6—6,8 6,9—7,1 7,2—7,4	7,21 7,24 7,26 7,28	26,5
7,5—7,7 7,8—8,0 8,1—8,3 8,4—8,6	7,30 7,33 7,35 7,37	26,4
8,7—8,9 9,0—9,2 9,3—9,5 9,6—9,8	7,40 7,42 7,45 7,47	26,3
9,9—10,1 10,2—10,4 10,5—10,7 10,8—11,0	7,50 7,52 7,55 7,57	26,2
11,1—11,3 11,4—11,6 11,7—11,9 12,0—12,2	7,60 7,62 7,65 7,68	26,1
12,3—12,5 12,6—12,8 12,9—13,1 13,2—13,4 13,5—13,7 13,8—14,0	7,70 7,73 7,76 7,78 7,81 7,81	26,0

С. 7 ГОСТ 29177—91

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Всесоюзным научно-исследовательским институтом комбикормовой промышленности
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 19.12.91 № 2008
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта
ГОСТ 61—75	2.1
ΓΟCT 83—79	2.1
ΓΟCT 1770—74	2.1, 3.1
ΓOCT 2080—76	2.1
ΓOCT 4165—78	2.1
ΓOCT 4204—77	2.1
ΓΟCT 4220—75	2.1
ΓOCT 4232—74	2.1
ΓOCT 4328—77	2.1
Γ OCT 5845—79	2.1
Γ OCT 6709—72	2.1, 3.1
Γ OCT 10163—76	2.1
Γ OCT 12026—76	2.1
ΓOCT 13586.3—83	1
Γ OCT 20264.4—89	2.2.8
Γ OCT 23635—90	3.1
ΓΟCT 24104—88	2.1
FOCT $25336 - 82$	2.1, 3.1
ГОСТ 29227—91	2.1, 3.1
ΓΟCT 29251—91	2.1, 3.1
ТУ 64—13—18	2.1, 3.1

5. ПЕРЕИЗДАНИЕ. Август 2004 г.

Редактор М.И. Максимова
Технический редактор В.Н. Прусакова
Корректор В.С. Черная
Компьютерная верстка И.А. Налейкиной

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 17.06.2004. Подписано в печать 03.08.2004. Усл. печ.л. 0,93. Уч.-изд.л. 0,75. Тираж 67 экз. С 3075. Зак. 279.