глинозем

МЕТОД ОПРЕДЕЛЕНИЯ НАСЫПНОЙ ПЛОТНОСТИ

Издание официальное

Предисловие

1 РАЗРАБОТАН Госстандартом России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации 21 октября 1993 г.

За принятие проголосовали:

Наименование государства	Наименование национального органа стандартизации Кыргызстандарт Госдепартамент Молдовастандарт Госстандарт России	
Кыргызская Республика Республика Молдова Российская Федерация		
Республика Таджикистан Туркменистан	Таджикгосстандарт Туркменглавгосинспекция	

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 02.06.94 № 160 межгосударственный стандарт ГОСТ 27801—93 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 01.01.95
- 4 B3AMEH ΓΟCT 27801-88

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен на территории Российской Федерации в качестве официального издания без разрешения Госстандарта России

[©] ИПК Издательство стандартов, 1995

межгосударственный стандарт

ГЛИНОЗЕМ

Метод определения насыпной плотности

ГОСТ 27801—93

Alumina. Method for the determination of bulk density

(MCO 903-76)

ОКСТУ 1711

Дата введения

01.01.95

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на глинозем, предназначенный преимущественно для производства алюминия, и устанавливает метод определения насыпной плотности.

Дополнения и изменения, отражающие потребности народного хозяйства, выделены курсивом.

2. ССЫЛКИ

ГОСТ 25389 «Глинозем. Метод подготовки пробы к испытанию».

ГОСТ 27798 «Глинозем. Отбор и подготовка проб».

3. СУЩНОСТЬ МЕТОДА

Сущность метода заключается в определении массы известного объема глинозема, собранной после свободного равномерного заполнения материалом стационарного контейнера (cocyda) при отсутствии вибрации.

4. АППАРАТУРА

4.1. Воронка диаметром 10 см и конусностью 60° с трубкой длиной 8 мм и отверстием 6 мм.

Допускается воронка, изготовленная из стекла, пластмассы или нержавеющей стали, имеющая следующие размеры:

внутренний диаметр — (100 ± 1) мм; угол наклона — $60^{\circ}\pm2^{\circ}$; длина стебля — (8 ± 1) мм;

внутренний диаметр стебля — (6^{+1}) мм.

- 4.2. Цилиндрический контейнер или цилиндрический плоскодонный сосуд, изготовленный из стекла, пластмассы или полированной нержавеющей стали, объемом 200 см³ с отношением высоты к внутреннему диаметру 1:6.
- 4.3. Стент и круглая опора для воронки, позволяющие установить ее на заданной высоте над верхним краем контейнера.
- 4.4. Предохранительная трубка, изготовленная из стекла, пластмассы или нержавеющей стали, с полированной внутренней поверхностью, с внутренним и внешним диаметрами, соответствующими диаметрам сосуда, высотой 100 мм.
 - 4.5. Штатив с подвижным кольцом для крепления воронки.
- 4.6.~ Весы технические с погрешностью взвешивания не более 0.05~г.

5 ПРОВЕДЕНИЕ ИСПЫТАНИЯ

5.1. Проба материала

Используется проба сырого материала, подготовленная по ГОСТ 25389.

5.2. Определение вместимости цилиндрического сосуда

Взвешивают цилиндрический сосуд с точностью до 0,05 г, предварительно удалив с его внутренней и внешней поверхностей загрязнения и влагу, затем помещают его на горизонтальную поверхность, наполняют до краев дистиллированной водой и снова взвешивают. Разность масс сосуда с водой и пустого сосуда будет соответствовать вместимости сосуда (плотность воды 1 г/см³). Вместимость цилиндрического сосуда определяют периодически.

5.3. Определение насыпной плотности

Устанавливают сухой контейнер на горизонтальную поверхность, не подвергающуюся вибрации. Положение воронки устанавливают таким образом, чтобы ее ось примерно совпадала с осью цилиндра, а конец стебля воронки располагался на расстоянии 100 мм над верхним краем цилиндрического контейнера. Допускается на цилиндрический сосуд устанавливать предохранительную трубку, над которой в кольце штатива укрепляют воронку таким образом, чтобы ее ось совпадала с осью сосуда и трубки;

а конец стебля воронки находился на высоте ± 1 мм от верхнего края трубки. Пробу глинозема усредняют перемешиванием. Из пробы совком или лопаткой отбирают глинозем и равномерно высыпают в центр воронки с высоты примерно 40 мм, не подвергая установку вибрации. Скорость подачи глинозема 20—60 г/мин. Если в стебле воронки образуется затор, то глинозем осторожно проталкивают проволокой, стараясь не шевелить контейнер.

Подачу глинозема прекращают, когда образовавшийся при выпуске конус над верхним краем контейнера начнет осыпаться. Удаляют конус избыточного глинозема осторожными движениями линейки до кромки верхнего края контейнера без вибрации. Взве-

шивают цилиндрический контейнер и его содержимое.

Воронку поднимают и укрепляют, предохранительную трубку снимают скольжением ее по краю сосуда без вибрации сосуда, удаляя таким образом избыток глинозема. Сосуд очищают снаружи и взвешивают с содержимым с погрешностью до 0,05 г. Испытание проводят три раза из одной и той же пробы.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ

6.1. Насыпную плотность (D), r/cm^3 , вычисляют по формуле

$$D = \frac{m_2 - m_0}{m_1 - m_0} \cdot \mathbf{v},$$

где m_2 — масса контейнера с глиноземом, г;

 m_1 — масса контейнера с дистиллированной водой, г;

 m_0 — масса пустого контейнера, г;

 ν — плотность воды, г/см³.

Если вместимость цилиндрического контейнера составляет точно 200 см³, насыпную плотность вычисляют по формуле

$$D = \frac{m_2 - m_0}{200} \cdot v.$$

Целесообразно использовать специальный цилиндрический контейнер вместимостью около $200~{\rm cm^3}$ и иметь значение (m_1-m_0) постоянное для всех измерений.

За насыпную плотность $(D_{\rm ep})$, г/см 3 , принимают среднее ариф-

метическое результатов трех испытаний.

Pасхождения между результатами параллельных определений не должны превышать 1% (отн.).

7. ПРОТОКОЛ ИСПЫТАНИЯ

Протокол испытания должен содержать следующие данные: идентификацию исследуемого материала; ссылку на применяемый метод; результаты испытания и метод их выражения; особенности, отмеченные в процессе определения; любые операции, не предусмотренные в настоящем стандарте или считающиеся необязательными.

информационные данные

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Обозначение соответствующего стандарта ИСО	Номер пункта, раздела
ГОСТ 25389—93	ИСО 802—76	2; 5.1
ГОСТ 27798—93	ИСО 2927—73	2

Редактор М. И. Максимова
Технический редактор Н. С. Гришанова
Корректор А. С. Черноусова

Сдано в наб. 27.06.95.

Подп. в печ. 25 07.95. Усл. п. л. 0,35. Уч.-нзд. л. 0,28. Тир. 386 экз. С 2660. Усл. кр.-отт. 0.35.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Филиал ИПК Издательство стандартов — тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 600.