ПРОДУКТЫ ПИЩЕВЫЕ КОНСЕРВИРОВАННЫЕ

МЕТОД ОПРЕДЕЛЕНИЯ ОЛОВА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРОДУКТЫ ПИЩЕВЫЕ КОНСЕРВИРОВАННЫЕ

Метод определения олова

ΓΟCT 26935—86

Canned food-stuffs.

Method for determination of tin

MKC 67.050 OKCTY 9109, 9209

Дата введения 01.12.86

для продуктов детского питания и сырья для их производства

01 12.86;

для консервов, коньяков и сырья для их производства

01.07.88;

для других пищевых продуктов и сырья

01.07.89

Настоящий стандарт распространяется на консервированные мясные, мясорастительные, плодоовощные, молочные, рыбные продукты и напитки, фасованные в жестяные банки, и устанавливает колориметрический метод определения олова.

Метод основан на измерении интенсивности окраски раствора комплексного соединения олова с кверцетином желтого цвета.

1. МЕТОД ОТБОРА И ПОДГОТОВКИ ПРОБ

1.1. Метод отбора проб и подготовка их к испытанию должны быть указаны в нормативно-технической документации на конкретную продукцию.

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания $200 \, \mathrm{r}$ с допускаемой погрешностью взвешивания $\pm 0.001 \, \mathrm{r}$ по ГОСТ 24104*.

Весы лабораторные общего назначения 3-го класса точности с наибольшим пределом взвешивания $1 \ \text{кг}$ с допускаемой погрешностью взвешивания $\pm 0.1 \ \text{г}$ по Γ OCT 24104.

Колориметр фотоэлектрический лабораторный с устройством для отсчитывания значения оптической плотности и светофильтром с $\lambda_{max} = (440 \pm 5)$ нм по нормативно-технической документации или спектрофотометр для измерения в видимой области спектра.

Баня водяная.

Термометр стеклянный технический с диапазоном измерения от 0 до 50 °C с допускаемой погрешностью измерения \pm 1 °C по ГОСТ 28498.

Прибор для измерения времени с допускаемой погрешностью измерения ± 1 мин.

Электроплитка бытовая по ГОСТ 14919 или других марок.

Штатив химический.

Воронки В-25—38 ХС, В-36—50 ХС, В-100—150 ХС по ГОСТ 25336.

Бюретка вместимостью 25 см³ с ценой деления 0,1 см³.

Колбы мерные 2—50—2, 2—100—2, 2—1000—2 по ГОСТ 1770.

Пипетки градуированные вместимостью 1, 2, 5 и 10 см³.

Палочки из стекла по ГОСТ 21400.

Стаканы B-1—50 ТХС, B-1—100 ТХС, B-1—250 ТХС, B-1—600 ТХС, B-1—1000 ТХС по ГОСТ 25336.

* С 1 июля 2002 г. действует ГОСТ 24104—2001 (На территории Российской Федерации действует ГОСТ Р 53228—2008).

Издание официальное

Перепечатка воспрещена

*

Цилиндры 1-25 или 3-25, 1-250 или 3-250, 1-500 или 3-500 по ГОСТ 1770.

Бумага индикаторная лакмусовая красная или 2, 4-динитрофенол, раствор в этиловом спирте 1 г/дм³.

Фильтры беззольные.

Вода дистиллированная по ГОСТ 6709.

Водорода перекись по ГОСТ 10929.

Кверцетин, раствор в этиловом спирте 2,0 г/дм³, профильтрованный через бумажный фильтр.

Кислота соляная по ГОСТ 3118, х.ч. или ч.д.а., концентрированная и раствор 83 г/дм3 (8 %).

Натрия гидроокись по ГОСТ 4328, х.ч. или ч.д.а., раствор 200 г/дм 3 или аммиак водный по ГОСТ 3760, ч.д.а.

Натрий хлористый по ГОСТ 4233, х.ч. или ч.д.а., насыщенный раствор.

Олово металлическое, ч.д.а.

Спирт этиловый по ГОСТ 18300 или по ГОСТ 5962*.

Тиомочевина по ГОСТ 6344, х.ч. или ч.д.а., раствор 100 г/дм³.

Допускается применять импортные оборудование, посуду и реактивы с техническими характеристиками не ниже отечественных аналогов.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

- 3.1.~ Приготовление основного раствора олова массовой концентрации $0.1~\text{мг/см}^3.$
- 0,1 г металлического олова взвешивают в стакане вместимостью 50 см 3 с погрешностью не более $\pm\,0,001$ г и растворяют при слабом нагревании на электрической плитке в 10 см 3 концентрированной соляной кислоты при добавлении 2 см 3 перекиси водорода. В раствор добавляют 40 см 3 концентрированной соляной кислоты и количественно переносят с помощью дистиллированной воды в мерную колбу вместимостью 1000 см 3 . Объем раствора в колбе доводят до метки дистиллированной водой.

Основной раствор олова хранят не более 2 мес.

- 3.2. Минерализация
- 3.2.1. Минерализация мокрым способом по ГОСТ 26929.
- 3.2.2. Аналогично готовят контрольную пробу, используя применяемые для минерализации реактивы, прибавляя их в тех же объемах и последовательности, что и для минерализации пробы.
- 3.3. Приготовление растворов сравнения, контрольного раствора и построение градуировочного графика
- 3.3.1. Для приготовления растворов сравнения 25 см³ основного раствора олова по п. 3.1 вносят в мерную колбу вместимостью 100 см³, объем раствора в колбе доводят до метки дистиллированной водой и перемешивают. Раствор готовят непосредственно перед использованием. Раствор содержит 25 мкг олова в 1 см³.
- 3.3.2. В мерные колбы вместимостью 50 см³ помещают 0,4; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ раствора по п. 3.3.1, т. е. соответственно 10; 25; 50; 75; 100 и 125 мкг олова. В каждую колбу вводят 1 см³ раствора хлористого натрия.
- 3.3.3. Объем раствора в колбе доводят до 10 см^3 дистиллированной водой, последовательно добавляют 5 см^3 раствора соляной кислоты 83 г/дм^3 и 10 см^3 раствора тиомочевины. Содержимое колб перемешивают.

В каждую колбу вводят 5 см 3 раствора кверцетина, сразу же доводят объем раствора почти до метки этиловым спиртом, перемешивают и выдерживают на водяной бане при температуре (20 \pm 2) °C в течение (25 \pm 5) мин.

После термостатирования объем раствора в колбе доводят до метки этиловым спиртом и перемешивают.

- 3.3.4. Контрольный раствор готовят аналогично растворам сравнения без введения раствора одова.
- 3.3.5. Оптическую плотность раствора сравнения измеряют по отношению к контрольному раствору на фотоэлектрическом колориметре с применением светофильтра с $\lambda_{\max} = (440\pm5)$ нм в кювете с расстоянием между рабочими гранями 20 мм или на спектрофотометре при длине волны 437 нм в кювете с расстоянием между рабочими гранями 10 мм. Если при заполнении кюветы в растворе образуются пузырьки газа, кювету оставляют стоять до полного освобождения раствора от пузырьков, после чего фотометрируют.

^{*} На территории Российской Федерации действует ГОСТ Р 51652—2000.

- 3.3.6. Градуировочный график строят, откладывая по оси абсцисс массы олова в мкг, внесенные в растворы сравнения, по оси ординат соответствующие им значения оптической плотности.
- 3.3.7. При подготовке растворов по пп. 3.3.1—3.3.4 необходимые объемы жидкостей отбирают только пипетками или бюретками. Приготовление растворов сравнения, контрольного раствора и построение градуировочного графика повторяют при смене партии кверцетина, тиомочевины или соляной кислоты.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. В мерную колбу вместимостью 50 см³ помещают аликвотный объем минерализата, равный 5 см³, и осторожно нейтрализуют из бюретки раствором гидроокиси натрия или водным аммиаком с использованием индикаторной лакмусовой бумаги или 2, 4-динитрофенола, раствор которого вводят в мерную колбу в количестве 0,1 см³. Нейтрализацию проводят при использовании лакмусовой бумаги до изменения ее цвета из красного в синий, а при использовании 2, 4-динитрофенола — до появления интенсивного желтого цвета. Определяют объем щелочи, израсходованный на нейтрализацию.

Далее выполняют операции по п. 3.3.3.

Аналогично готовят контрольный раствор из контрольной пробы по п. 3.2.2.

Оптическую плотность испытуемого раствора измеряют по отношению к контрольному раствору, как указано в п. 3.3.5.

Если подготовленный к фотометрированию раствор содержит осадок или величина его оптической плотности превышает величину оптической плотности раствора сравнения с содержанием олова 125 мкг, испытание повторяют, используя меньший аликвотный объем минерализата.

4.2. По полученному значению оптической плотности с помощью градуировочного графика находят массу олова.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Массовую долю олова (X_1) в млн⁻¹ (мг/кг) или массовую концентрацию (X_2) в мг/дм³ вычисляют по формулам:

$$X_1 = \frac{m_1 \cdot 50}{V_1 \cdot m}$$
; $X_2 = \frac{m_1 \cdot 50}{V_1 \cdot V}$,

где m_1 — масса олова, найденная по градуировочному графику, мкг;

m — масса навески продукта, взятой для минерализации, г;

 V_1 — аликвотный объем минерализата, взятый для испытания, см³;

V— объем продукта, взятый для минерализации, см 3 ;

50 — общий объем минерализата, см³.

Вычисление проводят до первого десятичного знака.

- 5.2. За окончательный результат принимают среднеарифметическое значение (\overline{X}) результатов двух параллельных определений, допускаемое расхождение между которыми при P=0.95 не должно превышать 20~% по отношению к среднеарифметическому значению. Окончательный результат округляют до целого числа.
- 5.3. Пределы возможных значений систематической составляющей погрешности измерений массовой доли олова любой пробы при допускаемых методикой изменениях влияющих факторов составляют \pm 0.10 \overline{X} .
- **5.4.** Минимальная масса олова, определяемая данным методом, составляет 10 мкг в колориметрируемом объеме.
- 5.5. Значение среднеквадратичного отклонения случайной составляющей погрешности измерений массовой доли олова одной и той же пробы в разных лабораториях при допускаемых методикой изменениях влияющих факторов составляет $0.14\ \overline{X}$.
- 5.6. Допускаемое расхождение между результатами испытаний, выполненных в двух разных лабораториях, при P=0.95 не должно превышать 40 % по отношению к среднеарифметическому значению.

информационные данные

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.06.86 № 1777
- 2. ВЗАМЕН ГОСТ 5370-58 в части метода определения олова
- 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта	Обозначение НТД, на который дана ссылка	Номер раздела, пункта
ГОСТ 1770—74	2	ГОСТ 10929—76	2
ГОСТ 3118—77	2	ГОСТ 14919—83	2
ΓΟCT 3760—79	2	ΓΟCT 18300—87	2
ΓΟCT 4233—77	2	ΓΟCT 21400—75	2
ΓΟCT 4328—77	2	ΓΟCT 24104—88	2
ГОСТ 5962—67	2	ГОСТ 25336—82	2
ГОСТ 6344—73	2	ГОСТ 26929—94	3.2.1
ГОСТ 6709—72	2	ΓΟCT 28498—90	2

- 4. Ограничение срока действия снято Постановлением Госстандарта от 12.07.91 № 1245
- 5. ПЕРЕИЗДАНИЕ. Март 2010 г.

СОДЕРЖАНИЕ

ГОСТ 26186—84 Продукты переработки плодов и овощей, консервы мясные и мясорастительные. Методы определения хлоридов
ГОСТ 26671—85 Продукты переработки плодов и овощей, консервы мясные и мясорастительные Подготовка проб для лабораторных анализов
ГОСТ 26889—86 Продукты пищевые и вкусовые. Общие указания по определению содержания азота методом Кьельдаля
ГОСТ 30178—96 Сырье и продукты пищевые. Атомно-абсорбционный метод определения токсичных элементов
ГОСТ 30538—97 Продукты пищевые. Методика определения токсичных элементов атомно-эмиссионным методом
ГОСТ Р 51301—99 Продукты пищевые и продовольственное сырье. Инверсионно-вольтамперометрические методы определения содержания токсичных элементов (кадмия, свинца, меди и цинка). 6:
ГОСТ 26927—86 Сырье и продукты пищевые. Методы определения ртути
ГОСТ 26928—86 Продукты пищевые. Метод определения железа
ГОСТ 26929—94 Сырье и продукты пищевые. Подготовка проб. Минерализация для определения содержания токсичных элементов
ГОСТ 26930—86 Сырье и продукты пищевые. Метод определения мышьяка
ГОСТ 26931—86 Сырье и продукты пищевые. Методы определения меди
ГОСТ 26932—86 Сырье и продукты пищевые. Методы определения свинца
ГОСТ 26933—86 Сырье и продукты пищевые. Методы определения кадмия
ГОСТ 26934—86 Сырье и продукты пищевые. Метод определения цинка
ГОСТ 26935—86 Продукты пищевые консервированные. Метод определения олова

сырье и продукты пищевые

Методы определения токсичных элементов

БЗ 8-2009

Редактор М.И. Максимова
Технический редактор В.Н. Прусакова
Корректор А.С. Черноусова
Компьютерная верстка В.И. Грищенко

Сдано в набор 16.12.2009. Подписано в печать 22.04.2010. Формат $60 \times 84^{1}/_{8}$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 21,86. Уч.-изд. л. 17,90. Тираж 490 экз. Изд. № 3860/2. Зак. .

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Hабрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ. Отпечатано в ордена Трудового Красного Знамени типографии им. Скворцова-Степанова ФГУП Издательство «Известия» УД П РФ Генеральный директор Э.А. Галумов 127994, ГСП-4, г. Москва, К-6, Пушкинская пл., д. 5 Контактные телефоны: 694-36-36, 694-30-20, e-mail: izd.izv@ru.net