

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ АНТИФРИКЦИОННЫЕ ПОРОШКОВЫЕ НА ОСНОВЕ ЖЕЛЕЗА

МАРКИ

FOCT 26802-86

Издание официальное

РАЗРАБОТАН Академией наук Украинской ССР ИСПОЛНИТЕЛИ

В. Н. Клименко, М. М. Симонович, И. М. Федорченко, Л. И. Пугина, А. Е. Кущевский, А. Т. Пекарик, Л. Д. Бернацкая

ВНЕСЕН Академией наук Украинской ССР

Вице-президент И. К. Походня

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 20 января 1986 г. № 149

Сдано в наб 02 02 86 Поди в печ 10 03 86 0,75 усл п л 0 75 усл кр отт 0 77 уч изд л Тир 20 000

МАТЕРИАЛЫ АНТИФРИКЦИОННЫЕ ПОРОШКОВЫЕ НА ОСНОВЕ ЖЕЛЕЗА

Марки

Iron-based powder antifriction materials. Types

ГОСТ 26802—86

OKCTY 1479

Постановлением Государственного комитета СССР по стандартам от 20 января 1986 г. № 149 срок действия установлен

с 01.01.87

Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на антифрикционные порошковые материалы на основе железа, предназначенные для деталей узлов трения машин и механизмов.

2. Марки, химический состав и физико-механические свойства антифрикционных порошковых материалов на основе железа долж-

ны соответствовать приведенным в таблице.

3. Предел прочности при изгибе, временное сопротивление при растяжении и ударная вязкость антифрикционных порошковых материалов приведены в справочном приложении 1.

4. Условия работы и области применения материалов приведе-

ны в рекомендуемом приложении 2.

5. Соответствие обозначений антифрикционных порошковых материалов на основе железа, ранее применявшимся в нормативно-технической документации, приведено в справочном приложении 3.

				Массовая	доля элеме	ентов, %
Марки	Железо	Никель	Медь	Фосфор	Молибден	Углерод
————— ПА-Ж	Ос-	_	_		_	Не более 0,3
ПА-ЖД ПА-ЖД5	7d.1bH0e	_	2,5—3,5 4,8—10,0			" " 0,3 " 0,5
ПА-ЖК	, ,		-	_		. , 0,3
ПА-ЖДК ПА-ЖГр	77	_	2,3-3,5	_	<u> </u>	0,5-1,2
ПА-ЖГр2 ПА-ЖГр3 ПА-ЖГрД ПА-ЖГр2Д ПА-ЖГрД5	27 79 71 29		2,3—3,5 2,5—3,0 4,8—10,0	 	 	1,4-2,0 2,2-3,2 0,5-1,2 1,5-2,8 0,7-1,3
ПА-ЖГрК	, ,	_	_	_		0,6-1,2
ПА-ЖГр2К ПА-ЖГрДК ПА-ЖГрДК1 ПА-ЖГрДК6	19 19 29	_ _ _	2,3—3,5 2,3—3,5 2,3—3,5 2,7—3,5	 	_ _ _ _	2,0-2,8 0,8-1,5 0,5-1,2 0,6-1,5
ПА-ЖГрЛ	,		12,0—15,0**		_	0,4-1,5
ПА-ЖГрЦс	, ,		_	—	_	0,6-1,4
ПА-ЖГр3Цс	, ,			<u> </u>	_	2,2-3,2
ПА-ЖГрЦсОК	,		_	_	_	0,7—1,4
ПА-ЖГрФК	7	-		0,3-0,7	_	0,6-1,2
ПА-ЖГрФ1К	, ,			0,8-1,2		0,6-1,2
ПА-ЖГрДФК	1 . }		2,5-3,5	0,1-0,5	-	0 2-0,6

			Физико-м	еханические свойства
Сера	Другие компоненты	Пори- стость, %	Твердость НВ, МПа, не менее	Микроструктура
_		1734	200	Феррит, поры, допускается
-		12—28 16—27	450 500	перлит до 20 % То же То же, допускаются отдельные включения меди и цемен-
0,1-0,5		17—22	400	тита до 10 % Феррит, включения сульфидов, поры, допускается перлит до 20 % и отдельные включе-
0,2-0,4	 	15—23 15—25	450 500	ния цементита до 5 % То же Перлит, графит, поры, допу- скается феррит до 40 %, вклю-
	 	15—25 15—25 15—25 13—23 16—27	500 450 600 600 500	чения цементита до 10 % То же
0,61,0		17—23	500	ния меди Перлит, графит, включения сульфидов, поры, допускается феррит до 40%, отдельные
0,6-1,0 0,2-0,5 0,6-1,0 1,6-6,0		17—25 15—25 17—25 18—25	600 600 600 600	включения цементита до 15 % То же
_	Zn 5,0—7,0**	Не бо тее 18	600	чения и разорванная сетка цементита Перлит, латунь, допускается феррит до 40 % и включения
0,4-1,1*	Zn не более 2,7*	15-20	500	цементита до 15 % Перлит, сульфиды, графит, поры, допускается феррит до 30 % и включения цементита
0,6-1,3	* Zn не более 2,7*	10-20	600	до 15 % Перлит, сульфиды, графит, поры, допускаются феррит до 30 % и включения цементита
1,5-1,9	* Zn	* 14-20	500	до 15 % Перлит, феррит 30—60 %,
0,8-1,2	Sn 0,8—1,2	До 20	1100	сульфиды, графит, поры Перлит, сульфиды, фосфори- стая эвтектика, поры, допуска-
0,8-1,2	1	Не боле 20	e 1200	ется феррит до 40 % То же
0,1-0,4		17—25	600	»

					нтов, %
Железо	Никель	Медь	Фосфор	Молибден	Углерод
0c-		2,5-3,5	0,1-0,5	1,5-2,0*	0,2-0,6
		2,5-3,5		1,5—3,6*	0,6—1,3
,	_		-	13,0—16,0	1,8-3,0
, ,	39,0—43 0			13 0—16,0	1,8—3,0
79	40,044,0		<u> </u>		7,5—11,0
, ,,		_	0,3-0,7	_	
19	_		0,8—1,2	_	_
,		_	1,0-1,2	2,4-2,6	-
,		_	_	0,2-0,5*	0,2-0,8
9	12,0—16,0	_	_	0,20,5*	0,5-1,5
	тальное	тальное не более 1,5 " — 39,0—43 0 " 40,0—44,0 " — — — — — — — — — — — — — — — — — —	тальное 1,5 Не более 2,5—3,5 , — — — — — — — — — — — — — — — — — —	тальное не более 2,5—3,5 — — — — — — — — — — — — — — — — — — —	Тальное 1,5 Не более 1,5 — — — 13,0—16,0 39,0—43 0 — — 13 0—16,0 40,0—44,0 — — — — — — — — — — — — — — — — — — —

Компоненты введены в виде сульфидов металлов
 Элементы пропитывающего сплава латуни Л69.

Примечания

Цифры, стоящие после букв, указывают на содержание определенного эле

нием одних и тех же элементов.

2. Интервал пористости, суженный для материала деталей узлов трения, ми интервала пористости и дополнительные требования к микроструктуре материала Минимальное допускаемое значение твердости материала деталей ($HB_{\text{дет}}$) $HB_{\text{пет}} = HB + K(\Theta_{\text{max}} - \Theta)$,

где НВ — минимальная величина твердости по данным таблицы, МПа;

К — поправочный коэффициент, характеризующий изменение твердости от менее 8,0 — ПА-ЖГрДМс, ПА-ЖХ20КБ; 10,0 — ПА-ЖГрЗЦс, ПА-ПА-ЖГрД; 17,1 — ПА-Ж; 17,5 — ПА-ЖД; 18,0 — ПА-ЖГрДК; ПА-ЖГр2К; 37,5 — ПА-ЖГр2; 40,0 — ПА-ЖД5; 54,5 — ПА-

 Θ_{max} — максимальная величина пористости материала по данным таблицы, Θ — максимальная величина пористости для установленного интервала изделия, %.

¹ В обозначении марок перед дефисом буквы указывают: Π — на при тифрикционный После дефиса следует буквенное обозначение основы материала X — хром, H — никель, Φ — фосфор, E — бор, E — сера, E — дисульфид

Продолжение

			Физико м	еханические свойства	
	Cepa	Другие компоненты	Пори- стость %	Твердость НВ МПа, не менее	Микроструктура
	0,6—1,5*		1823	500	То же и до 10% цементита
	1,5—2,4*		1525	700	Перлит, сульфиды, свобод- ный графит, поры, допускается до 40 % феррита и до 10 %
			15—23	600	цементита Перлит, свободный графит, отдельные включения карбидов
	_		12-23	700	до 15%, феррит до 30%, поры Твердый раствор с участками перлита и мартенситоподобной структуры, отдельные включения карбидов, свободного графия.
	0,4-1,2*	Zn не более 1,9*, Мп не более 2,2	8—18	2 30	фита, поры Твердый раствор с включе- ниями участков перлита и кар- бидов, графит, сульфиды, поры
	0,8-1,2		Не более 20	950	Феррит с включениями сульфидов, фосфористая эвтектика, поры
	0,8-1,2	-	Не более 20	700	То же
	0,8-1,2	-	Не более 20	600	*
		Cr 17—23, B 0,02—0,80	20-30	700	Легированный хромом и бо- ром феррит, включения сульфи- дов, карбидов, боридов, поры
	0,3-1,5	Cr 16—20, B 0,02—0,15	18—26	600	Гетерогенная структура на основе легированного аустенита, включения перлитообразного типа, карбидов, сульфидов, поры

надлежность материала к порошковому, A — на назначение материала — ани легирующих компонентов Ж — железо, Д — медь, О — олово, Γ — графит, молибдена, Цс — сернистый цинк, Π — латунь, M — молибден мента в материалах сходных композиций, отличающихся процентным содержа-

нимальное допускаемое значение твердости деталей (HB_{дет}) для указанного устанавливаются в нормативно-технической документации на конкретные изделия. в мегапаскалях определяется по формуле

пористости Поправочный коэффициент для марок материалов должен быть не ЖГрДФК, ПА ЖГрЗМ, ПА ЖНГрЗМ, ПА-ЖНГр10Цс, ЖХ18Н15КБ, 16,6—20,0— ПА ЖГр, ПА-ЖГрДК1, 29,3— ПА-ЖГр3; 32,0— ПА-ЖДК, 33,3— ЖГрД5, 63,6— ПА ЖГр2Д,

пористости материала в нормативно технической документации на конкретные

ПРИЛОЖЕНИ**Е 1** Справочное

Марка материала	Предел проч- ности при из- гибе, МПа	Временное сопротивление при растяже- нии, МПа	Ударная вязкость, кДж/м²
		не менее	
ПА-Ж ПА-ЖД ПА-ЖД5 ПА-ЖД5 ПА-ЖК ПА-ЖДК ПА-ЖГр ПА-ЖГр2 ПА-ЖГр2 ПА-ЖГр3 ПА-ЖГр2Д ПА-ЖГр2Д ПА-ЖГр2Д ПА-ЖГр2Б ПА-ЖГр2К ПА-ЖГр2К ПА-ЖГрДК ПА-ЖГрДК ПА-ЖГрДК6 ПА-ЖГрДК6 ПА-ЖГрДК6 ПА-ЖГрДС6 ПА-ЖС20К	130 250 300 170 250 140 110 110 250 200 250 140 150 200 220 ———————————————————————————	85 120 150 120 120 120 120 100 70 150 150 150 150 150 100 100 100 100 10	30 39 40 — 30 30 20 15 30 25 30 25 20 — 150 — 20 — 20 — 20 — 150 — 20 — 25 20 — 15 20 — 25 20 — 25 20 — 20 20 — 20

ПРИЛОЖЕНИЕ 2 Рекомендуемое

Марка	Условия работы	Область применения
ПА-Ж ПА-ЖК	Работают при обильной смазке при давлении до 2,5 МПа и скоростях скольжения 1—2 м/с В режиме самосмазывания нагрузки до 1,5 МПа, коэффициент трения 0,03—0,06 Присутствие серы увеличивает срок службы и улучшает обрабаты	Прецизионные под- шипники приборов, быто- вой аппаратуры, счетно- решающих машин, тек- стильного оборудования
ПА-ЖД, ПА-ЖД5, ПА-ЖДК, ПА-ЖГр, ПА-ЖГр2, ПА-ЖГр3, ПА-ЖГрД, ПА-ЖГрД5, ПА-ЖГр2Д	ваемость материала Работают в условиях ограниченной и обильной смазки при давлениях до 4 и 10 МПа соответственно и скорости скольжения до 3 м/с, в режиме самосмазывания до 2 МПа Коэффициент трения 0,035—0,125 в зависимости от количества смазки и состава материала. Материалы с увеличенным содержанием графита работают на верхнем пределе указанных нагрузок, при скоростях скольжения до 5 м/с имеют больший срок службы, меньший износ и коэффициент трения. Присутствие серы увеличивает износостойкость и улучщает обрабатываемость мате-	Подшипники и детали узлов трения тракторов, сельхозмашин, станков, приборов, аппаратов бытовой техники, автомобилей, например, деталей телескопических амортизаторов, редукторов лебедки и др
ПА-ЖГрК, ПА-ЖГр2К, ПА-ЖГрДК, ПА-ЖГрДК1, ПА-ЖГрДК6, ПА-ЖГрЦс	риала Работают в режиме самосмазывания и ограниченной подачи смазки при давлении до 12 МПа, при скоростях скольжения в диапазоне 3—8 м/с, при повышенных температурах до 250 °C Коэффициент трения 0,01—	Подшипники сколь- жения и другие детали узлов трения автомоби- лей, станков, различных машин и механизмов Например, втулки на- правляющей клапана, компрессора бытового
ПА-ЖГрЛ	0,1 Работает в условиях ограниченной смазки при давлении 8 МПа, скорости скольжения 2—5 м/с и температуре минус 60—плюс 100°С; имеет коэффициент трения не более 0,1 и улучшенную притираемость по сравнению с латунью	холодильника и др Пробки кранов воздушных, водяных, паромасляных и других систем, например, кранов тормозных систем паровозов, вагонов и др.

		11 россиясение
Марка	Условия работы	Область применения
ПА-ЖГр3Цс	Работает в режиме самосмазывания ограниченной смазкой при скоростях скольжения до 100 м/с, давлениях до 20 МПа при скорости 5—10 м/с Работает в паре с закаленными сталями, имеет высокую износостойкость (до 8 раз большую, чем бронзы, баббиты, подшипники качения, чугуны), низкий коэффициент трения (0,02—0,2), величина которого зависит от условий трения	Подшипники, втулки, вкладыши, торцовые уплотнения быстровращающихся валов различных машин, двигателей, электроверетен, приборов и т д
ПА-ЖГрЦсОҚ	Работает в режиме самосмазывания и ограниченной смаз ки в диапазоне скоростей скольжения 5—75 м/с при давлениях от 0,1 до 10 МПа, уменьшающихся с повышением скорости Работает в паре с закаленными и нормализованными сталями, обладает повышенной износостойкостью (в 2,5 раза превышает износостойкость пористого бронзографита), имеет	Узлы трения вьюркового веретена, подшипники активатора стиральной машины и др. бытовых приборов, текстильного оборудования и т п.
ПА-ЖГрФК, ПА-ЖГрФ1К	коэффициент трения 0,03—0,1 Работает в условиях ограниченной смазки при давлении до 20 МПа; скорости скольжения от 0,5 до 12 м/с Коэффициент трения 0,01—0,05 Малопористые материалы используются для работы без смазки при давлениях до 3 МПа Рабочая температура до 200°С, коэффициент трения 0,19—0,33	Подшипники и другие детали узлов трения станков, машин и меха- низмов
ПА-ЖГрДФК, ПА-ЖГрДФМс, ПА-ЖГрДМс	Работают в условиях ограниченной смазки и без смазки при давлениях до 2,5 МПа Имеют низкий износ и коэффициент трения 0,08—0,12	Детали узлов трения автомобилей (шайбы, сухари, втулки), например, втулка маятникового рычага передней подвески
ПА-ЖГрЗМ, ПА-ЖНГрЗМ	Работают в условиях ограниченной смазки и без смазки в широком диапазоне скоростей скольжения от 0,1 до 100 м/с, допустимые давления до 18 МПа, температура до 450 °C на воздухе Имеют коэффициент трения 0,03—0,20, повы-	автомобиля ГАЗ-14 и др Подшипники верхних опор скольжения шпинделя барабанов хлопко-уборочных машин, электромотров, уплотнения бессмазочных компрессоров, приборов и др

Продолжение

Марка	Условия работы	Область применения
ПА-ЖНГр10Цс	шенную износостойкость по сравнению с другими материалами на основе железа. Введение никеля повышает коррозионную стойкость материала, позволяет использовать его при трении в присутствии влаги и ее паров Предназначен для работы в воде, паре и других несмазывающих жидкостях; работает по закаленным и незакаленным поверхностям Допустимые давления до 10 МПа, скорости скольжения до 50 м/с, температура до 250 °С; коэффициент трения 0,03—0,3 в зависимости от режима трения. Имеет в 2—6 раз более высокую износо-	Торцовые уплотнения насосов установок по обработке молока, масла и молочных продуктов; подшипники опор скольжения моечных ванн, красильно-отделочных и сушильных агрегатов текстильной промышленности и т п.
ПА-ЖФК, ПА-ЖФ1К, ПА-ЖФКМ	стойкость по сравнению с антегмитом, текстолитом, пластографитом и фторопластом Работают в условиях ограниченной смазки при давлениях до 20 МПа, в диапазоне скоростей скольжения 0,5—6,0 м/с; рабочая температура до 200°С; коэффициент трения 0,009—0,030 Малопористые материалы способны работать	Подшипники и другие детали узлов трения станков; машин и меха- низмов
ПА-ЖХ20КБ, ПА-ЖХ18Н15КБ	без смазки при давлениях до 3,5 МПа и скорости скольжения 0,8 м/с Коэффициент трения 0,19—0,30 Предназначены для работы без смазки в воде и других агрессивных средах, при температурах до 600 °С, скоростях скольжения до 60 м/с Имеют более высокую износостойкость в присутствии абразива, чем закаленная сталь 40Х13	Армировочные втулки насосов водоподъема, подшипники химической аппаратуры, двигателей, приборов и т д.

Обозначение марок по ГОСТ 26802—86	Ранее применявшиеся обозначения в НТД
ПА-Ж	Жпор, ЖГр0,5, Ж-6,0; ЖГр0,1
ПА-ЖД	ЖД2,5, ЖД3, ЖД3,5, ЖГр0,1Д 2 ,5
	ЖГр0,5Д2,5
ПА-ЖД5	ЖД5; ЖД10, ЖГр0,25Д5; ЖД10—6,0
ПА-ЖК	ЖК0,3, ЖК0,4
па-ждк	ЖД3К0,3, ЖДК0,27, ЖГр0,5Д3Д3К0,3; ЖГр0,5Д3К0,4
	ЖГр0,5Д3К0,4 ЖГр0,5Д2,5К0,3; ЖГр0,5Д2,5К0,4
q 7 Ж-АП	ЖГр1; ЖГр1,2, ЖГр1,5, Ж40—59, ЖГр1—
	60, Ж20—62
ПА-ЖГр2	ЖГр2, ЖГр2—20, Ж50—58
ПА-ЖГрЗ ПА-ЖГрД	
ти-жтрд	ЖГр0,5Д2,5, ЖГр0,8Д3, ЖГр(1-1,5)
ПА-ЖГр2Д	ЖГр2Д2,5, ЖГр3Д3, ЖГр3Д3—5,5
ПА-ЖГрД5	ЖГр1,5Д10, МЖГ1, ЖГр1,5Д5
ПА-ЖГрК	ЖГр1К0,8, ЖГр1К1, ЖГр1,2К0,8;
ПА-ЖГр2К	₩20H1,5K1—59, ₩30K1—58
ПА-ЖГРДК	ЖГр3К0,8, ЖГр3К1, ЖГр2К1 ЖГр1Д2,5К0,4, ЖГр1,2Д2,5К0,4,
	ЖГр1,5Д2,5К0,4 ЖГр2,5Д2,5К0,3;
	ЖГр1,5Д3К0,4, ЖГр1,5Д3К0,4,
	ЖГр1,5Д3К03, Ж30Д3К0,4—60,
ПА-ЖГрДК1	ЖГр1,5Д2,5К0 5 ЖГр0,5Д3К0,8, ЖГр1Д2,5К, ЖГр1,2Д2,5
пажі рдісі	M1 р0,5Д3K0,6, M1 р1Д2,5K, M1 р1,2Д2,5 K0,8,
	ЖГр2Д2,5К0,8, Ж20Н1,5Д1,5К1—59
ПА ЖГрДК6	ЖГр1,5Д3 пропитан серой (без марки)
ПА-ЖГрЛ	ЖГр1,5Л, Ж40Л—69
ПА ЖГрЦс ПА-ЖГрЗЦс	ЖГр(1,0—1,5)Цс4 ЖГрЦс4У, ЖГр3Цс4
ПА-ЖГрЦсОҚ	ЖГр1,5Цс491К1
ПА ЖГрФК	ЖФ0,5К1Гр0,8
ΠΑ ЖΓρΦ1Κ	Ж Ф 1К1Гр0,8
ПА-ЖГРДФК	ЖГр0,6Д2,8К0,3Ф0,3
ПА-ЖГрДФМс ПА-ЖГрДМс	
ПА-ЖГрДіне	ЖГр3М15
ПА-ЖНГрЗМ	ЖНГ _р 3М15
ПА-ЖНГр10Цс	MF30ЖH1K
ПА-ЖФК ПА-ЖФ1К	ЖФ0,5К1 ЖФ1К1
ПА ЖФКМ	$\mathcal{K}\Phi_{1}K_{1}M_{2,5}$
ПА-ЖХ20КБ	Х20КБ
ПА-ЖХ18Н15КБ	Х18Н15КБ

Изменение № 1 ГОСТ 26802—86 Материалы антифрикционные порощковые на основе железа. Марки

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 20.12.89 34 3960 Дата введения 01.07.90

Пункт 1 дополнить абзацами: «Стандарт не распространяется на порошковые материалы после термообработки».

Стандарт соответствует международному стандарту ИСО 5755/1 в марок ПА-Ж и ПА-ЖД».

Пункт 2 Таблицу дополнить графой — Предел прочности при радиальном сжатии $\sigma_{p,c}$, МПа, не менее»; графу «Микроструктура» изложить в новой редакции

Ма рьи	Предел прочности при радиальном сжатии р с. мПа, не менее	М икроструктур а
ПА-Ж	120 170 (при порис- тости не более 22 %)	Феррит, поры, допускается перлит до 20 %
ПЖ-АП 6ДЖАП	225 270	То же То же, допускаются отдельные вклю-
ПА-ЖК	155	чения меди и цементита до 10 % Феррит, включения сульфидов, поры допускается перлит до 20 %, отдельны включения цементита до 5 %
ПА-ЖДК	225	Феррит, включения сульфидов, поры, допускается перлит до 20%, отдельные включения цементита до 5 %
ПА-ЖГр	125	Перлит, поры, допускается феррит до 40%, включения и разорванная сетка цементита до 10% и включения графита

(Продолжение см. с. 76)

Марки	Предел прочности при радиальном сжатии о р.с. не менее	Микроструктура
ПА-ЖГр2	100	Перлит, графит, поры, допускается феррит до 40%, включения цементита
ГА-ЖГр3 ПА-ЖГрД	100 22 5	до 10 % То же Перлит, поры, допускаются феррит до 40 %, включения и разорванная сет- ка цементита до 10 % и включения гра- фита
ГРА-ЖГр2Д	180	Перлит, графит, поры, допускается феррит до 40%, включения цементита до 10%
ПА-ЖГрД5	225	Перлит, поры, допускается феррит до 40%, включения и разорванная сетка цементита до 10%, включения графита и меди
ЛА-ЖГрК	125	Перлит, включения сульфидов, поры, допускаются феррит до 40 %, включения и разорванная сетка цементита до 15 %
ПА-ЖГр2К	135	включения графита Перлит, графит, включения сульфи- дов, поры, допускается феррит до 40 %,
ПА-ЖГрДК	180	отдельные включения цементита до 15 % Перлит, включения сульфидов, поры, допускается феррит до 40 %, включения и разорванная сетка цементита до 15 %
П А -ЖГрДК1	180	и включения графита То же

(Продолжение см. с. 77)

		11 роболжение
Марки	Предел прочности при радчальном сжатии рес МПа, не менее	Микроструктура
ПА-ЖГрДК6	200	Зернистый перлит, твердый раствор меди в железе, сульфиды, поры, допус-
ПА-ЖГрЛ	_	каются включения и разорванная сетка цементита и включения графита Перлит, латунь, допускается феррит до 40%, включения и разорванная сетка цементита до 15% и включения гра-
ПА-ЖГрЦс	160	фита Перлит, сульфиды, поры, допускают- ся феррит до 30%, включения и разор- ванная сетка цементита до 15%, вклю-
ПА-ЖГр3Цс	145	чения графита Перлит, сульфиды, графит, поры, до- пускаются феррит до 30 % и включения
ПА-ЖГрЦсОК	160	цементита до 15 % Перлит, феррит 30—60 %, сульфиды,
ПА-ЖГрФК	_	графит, поры Перлит, сульфиды, фосфористая эвтектика, поры, допускаются феррит до
ПА-ЖГрФ1К ПА-ЖГрДФК	=	40%, графит То же Перлит, сульфиды, фосфористая эвтек-
ПА-ЖГрДФМс ПА-ЖГрДМс	18 6 2 00	тика, поры допускается феррит до 40 % То же, и цементита до 10 % Перлит, сульфиды, поры, допускаются феррит до 40 %, включения и разорванная сетка цементита до 10 %, включения графита
М8qЛЖ-АП	135	Перлит, свободный графит, отделы включения карбидов до 15%, феррит 30%, поры Твердый раствор с участками перл и мартенситоподобной структуры, дельные включеныя карбидов, свобного графита, поры
ПА-ЖНГр3М	225	
ПА-ЖНГр10Цс	45	Твердый раствор с включениями уча- стков перлита и карбидов, графит, суль- фиды, поры
ПА-ЖФК	_	Феррит с включениями сульфидов, фосфористая эвтектика, поры
ΠΑ ЖΦΙΚ		То же
ПА ЖФКМ ПА-ЖХ20КБ	145	» Легированный хромом и бором феррит, включения сульфидов, карбидов,
ПА-ЖХ181115ҚБ	270	боридов, поры Гетерогенная структура на основе легированного аустенита, включения перлитообразного типа, карбидов, сульфидов, поры

примечание 1 изложить в новой редакции: «1. Показатель предела прочно при радиальном сжатии до 01.01.92 браковочным признаком не является и ределяется для набора статистических данных»;

примечание 2. Первый абзац исключить;

таблицу дополнить примечанием — 3: «3. По согласованию изготовителя

потребителем микроструктура должна быть:

для марки ПА-ЖГр — перлит, перлито-феррит, феррито-перлит (перлита менее 40 %), разорванная сетка цементита до 15 %, включения графита;

для марки ПА-ЖГрД — перлит, перлито-феррит, феррито-перлит (перли≠ не менее 40 %), разорванная сетка цементита до 15 %, отдельные мелкие вкл чения графита и меди.

для марки ПА-ЖГрК — перлит, перлито-феррит, феррито-перлит (перлита не менее 40 %), включения сульфидов, разорванной сетки цементита до 15 %,

графита, поры;

для марки ПА-ЖГрДК — перлит, перлито-феррит, феррито-перлит (перлитане менее 40 %), включения и разорванная сетка цементита до 15 %, включени графита и меди;

для марки ПА-ЖГрДК6 — перлит, перлито-феррит, феррито-перлит (перлита не менее 40 %), сульфиды, поры, допускаются включения и разорванная

сетка цементита до 10 % и включения графита».

Стандарт дополнить пунктами — 6, 7: «6. Условное обозначение состоит из букв и цифр. Буквы указывают: П — принадлежность материала к порошковому, А — назначение материала — антифрикционный, после дефиса — основа материала и легирующие элементы: Ж — железо, Д — медь, О — олово, Гр — графит, Х — хром, Н — никель, Ф — фосфор, Б — бор, К — сера, Мс — дисульфид молибдена, Цс — сернистый цинк, Л — латунь, М — молибден.

Цифры, стоящие после букв, указывают на содержание определенного элемента в материалах сходных композиций, отличающихся процентным содержа-

нием одних и тех же элементов.

Пример условного обозначения порошкового антифрикционного материала на основе железа, легированного углеродом по ГОСТ 26802—86 ПА-ЖГр ГОСТ 26802—86.

7. Методы контроля

7 1 Пористость определяют по ГОСТ 18898—73.

7.2 Твердость определяют по ГОСТ 25698—83.

- 73. Предел прочности при радиальном сжатии определяют по ГОСТ 26529—85.
 - 7.4. Предел прочности при изгибе определяют по ГОСТ 18228-85.
- 75. Временное сопротивление при растяжении определяют по ГОСТ 18227—85.
 - 7 6. Ударную вязкость определяют по ГОСТ 26528—85».

(ИУС № 3 1990 г.)