

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛУЧИ КОСМИЧЕСКИЕ СОЛНЕЧНЫЕ

МОДЕЛЬ ПОТОКОВ ПРОТОНОВ

ГОСТ 25645.134-86

Издание официальное

ИСПОЛНИТЕЛИ

С. И. Авдюшин, д-р техн. наук; А. С. Александров, д-р физ.-мат. наук; Г. А. Базилевская; В. М. Балебанов, канд. физ.-мат. наук; В. И. Васильев, канд. техн. наук; Е. В. Горчаков, д-р физ.-мат. наук; А. И. Григорьев, д-р мед. наук; М. В. Зиль; С. Р. Кельнер, канд. физ.-мат. наук; Е. Е. Ковалев, д-р техн. наук; О. М. Коврижных, канд. физ.-мат. наук; А. В. Коломенский, канд. физ.-мат. наук; Ю. Д. Котов, канд. физ.-мат. наук; Е. Н. Лесновский, канд. техн. наук; Ю. И. Логачев, д-р физ.-мат. наук; В. М. Ломакин, канд. техн. наук; Е. И. Морозова, канд. физ.-мат. наук; Н. А. Мясоедов; В. Н. Никитинский; С. И. Никольский, д-р физ.-мат. наук; Н. К. Переяслова, канд. физ.-мат. наук; И. Е. Петренко; В. М. Петров, канд. физ.-мат. наук; Н. Ф. Писаренко, канд. физ.-мат. наук; И. Г. Пыхова; И. Я. Ремизов, канд. техн. наук; В. А. Сакович, канд. физ.-мат. наук; В. И. Стожков, д-р физ.-мат. наук; А. И. Сладкова, канд. физ-мат. наук; И. Б. Теплов, д-р физ.-мат. наук; А. И. Сладкова, канд. физ-мат. наук; И. Б. Теплов, д-р физ.-мат. наук;

СОГЛАСОВАНО с Государственной службой стандартных справочных данных [протокол от 11 ноября 1985 г. № 22]

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 14 января 1986 г. № 84

Группа Т27 к ГОСТ 25645.134—86 Лучи космические солнечные. Модель потоков протонов

В каком месте	Напечатано	Должно быть
Формула (8)	220 f	220 ∫ 30
	где $\phi[N_{30}N_{E}]^{30}$	где $\phi[N_{30}(N_{E})]$
	(ИУС № 11 1987 г.)	

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛУЧИ КОСМИЧЕСКИЕ СОЛНЕЧНЫЕ

Модель потоков протонов

Solar cosmic rays.

Model of proton fluxes

ΓΟCT 25645.134—86

OKCTY 0080

Постановлением Государственного комитета СССР по стандартам от 14 января 1986 г. № 84 срок введения установлен с 01.07.87

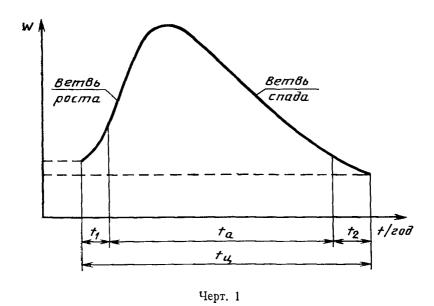
1. Настоящий стандарт устанавливает модель потоков протонов солнечных космических лучей (СКЛ) с энергией $E \geqslant 10$ МэВ в межпланетном пространстве вне магнитосферы Земли вблизи плоскости эклиптики на расстоянии ~ 1 а. е. от Солнца в различные периоды 11-летнего цикла солнечной активности (далее 11-летнего цикла).

Стандарт предназначен для использования в расчетах радиационного воздействия потоков СКЛ на технические устройства, биологические и другие объекты в космическом пространстве.

2. Каждый 11-летний цикл имеет активный и пассивный периоды, характеризующиеся различными значениями потоков СКЛ. Длительности активного $t_{\rm a}$ и пассивного $t_{\rm n}$ периодов 11-летнего цикла вычисляют по формулам:

$$t_{\rm a} = 0.75 t_{\rm u};$$
 (1)

$$t_{\rm n} = t_1 + t_2 = 0.25t_{\rm n},$$
 (2)


где $t_{\rm q}$ — длительность 11-летнего цикла; $t_{\rm 1}$ и $t_{\rm 2}$ — интервалы времени, равные соответственно 0,1 $t_{\rm q}$ и 0,15 $t_{\rm q}$.

Примечания:

1. Длительность $t_{\rm q}$ и положение начала 11-летнего цикла определяют по ГОСТ 25645.302—83.

2. Положение t_a , t_1 и t_2 в 11-летнем цикле приведено на черт. 1.

Изменение среднегодовых чисел Вольфа W в течение 11-летнего цикла

- 3. В пассивные периоды 11-летнего цикла полный поток протонов солнечных космических лучей с энергией $E \geqslant 10~{\rm MpB}$ принимают равным $10^7~{\rm cm}^{-2}$ независимо от длительности космического полета.
- 4. В активный период 11-летнего цикла полный поток протонов солнечных космических лучей N_E , см $^{-2}$, с энергией больше E является случайной величиной, накапливающейся в результате появления за полет длительностью T, сут, случайного числа солнечных протонных событий (СПС).
- 5. Вероятность P (> N_E , T) превышения заданного значения полного потока протонов N_E с энергией больше E за полет длительностью T определяется принятой для активного периода 11-летнего цикла статистической моделью СПС, в которой заданы следующие характеристики: ψ (Δt) плотность распределения интервалов времени Δt , сут, между СПС, в которых полный поток протонов N_{30} , см⁻², с энергией $E \geqslant 30$ МэВ составляет не менее 10^5 см⁻², определяемая по формуле

$$\psi(\Delta t) = \lambda \exp\left(--\lambda \Delta t\right),\tag{3}$$

 φ (N_{30}) — плотность распределения полного потока протонов N_{30} с энергией $E\!\geqslant\!30\,$ МэВ в интервале значений 10^5 — $10^{10}\,$ см $^{-2}$, определяемая по формуле

$$\varphi(N_{30}) = \frac{0.173}{N_{30}} \exp\left(-0.5 \lg^2 \frac{N_{30}}{10^7}\right); \tag{4}$$

 $f\left(R_{0}\right)$ — плотность распределения характеристической жесткости спектра потока протонов R_{0} , MB, в интервале значений 30-220 MB, определяемая по формуле

$$f(R_0) = \frac{0.866}{R_0} \exp\left(-12.5 \lg^2 \frac{R_0}{80}\right).$$
 (5)

6. Значения вероятности $P(>N_E, T)$ вычисляют по формуле

$$P(>N_E,T) = e^{-\lambda T} \sum_{k=1}^{\infty} \frac{(\lambda T)^k}{K!} \int_{N_E}^{\infty} \varphi_{\kappa}(N_E') \ dN_E', \tag{6}$$

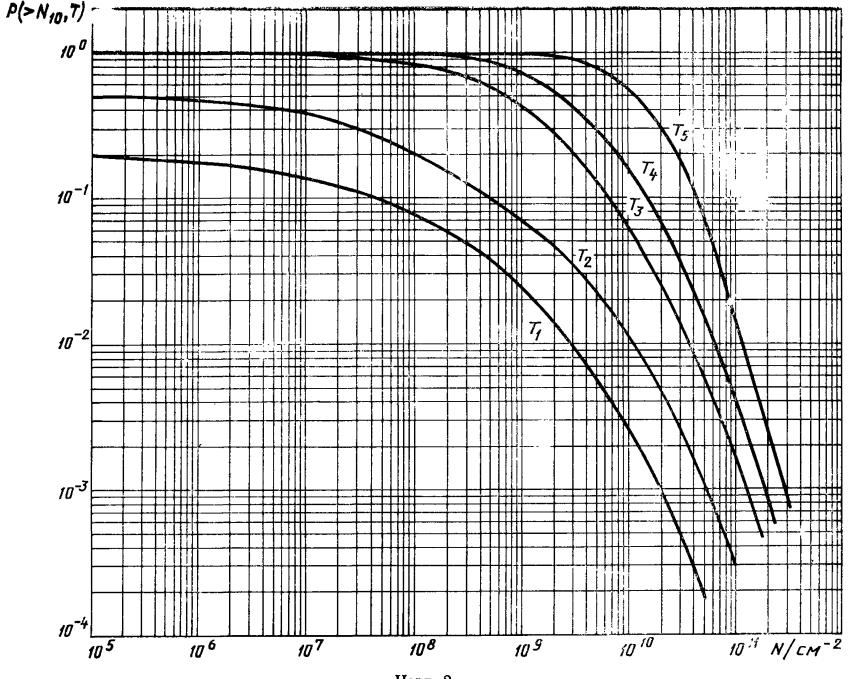
где К — число СПС;

 $\phi_k (N_E')$ — плотность распределения полного потока протонов с энергией больше E для K событий, вычисляемая по формуле

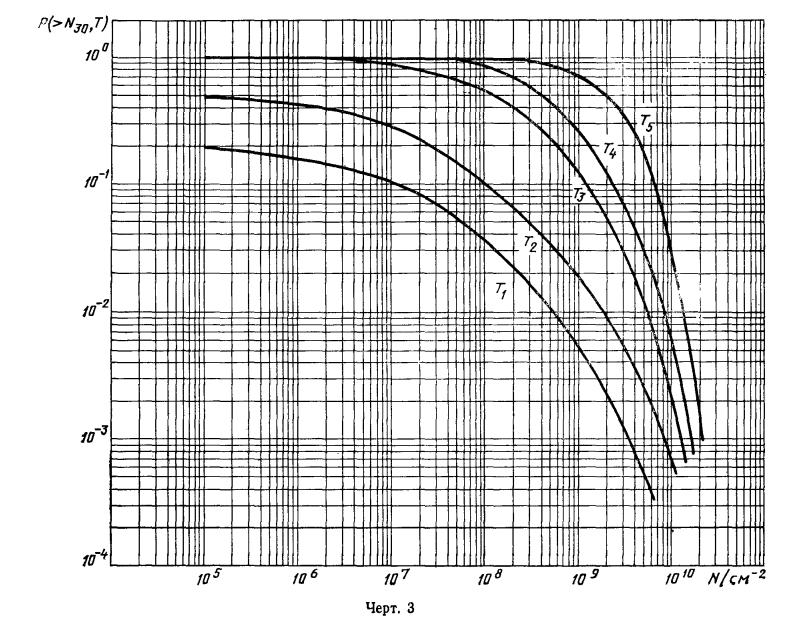
$$\varphi_{\kappa}(N'_{E}) = \begin{cases} \varphi(N_{E}), & \text{при } K = 1 \\ N'_{E} & \text{ } \int_{0}^{N'_{E}} \varphi_{K-1}(N'_{E} - N''_{E}) \varphi_{1}(N''_{E}) dN''_{E}, & \text{при } K > 1 \end{cases}$$
 (7)

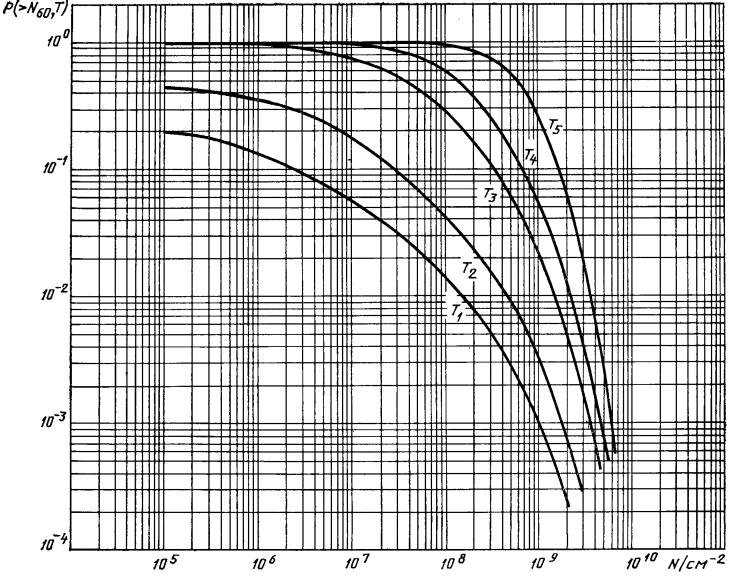
где ϕ (N_E) — плотность распределения полного потока протонов **с** энергией больше E в одиночном СПС, вычисляемая по формуле

$$\varphi(N_E) = f \varphi[N_{30}(N_E)] e^{-\frac{R_{30} - R_E}{R_0}} \cdot f(R_0) dR_0,$$
 (8)


где $\phi \, [N_{30} \, N_E]^{30}$ — функция, получаемая из формулы (4) при подстановке вместо N_{30} значения N_E , вычисляемого по формуле

$$N_E = N_{30} \exp\left(\frac{R_{30} - R_E}{R_0}\right),$$
 (9)


где R_{30} — характеристическая жесткость спектра потока протонов с энергией $E{=}30$ МэВ, равная 239 МВ;


 R_E — характеристическая жесткость спектра потока протонов с энергией E, МэВ, вычисляемая в МВ по формуле

$$R_E = \sqrt{E^2 + 1876 E}$$
. (10)

Черт. 2

Черт. 4

Вероятности превышения полного потока протонов Для полетов длительностью $T_1 = 10$ сут

N_E , cm -2	$P(>N_{10}, T_1)$	$P(>N_{30}, T_1)$	$P\left(>N_{\rm fi0},\ T_{\rm i}\right)$
105	2,0.10-1	2,0.10-1	2,0.10-1
$2 \cdot 10^5$	2,0.10-1	1,9.10-1	1,9.10-1
$5 \cdot 10^5$	1,9.10-1	1,8.10-1	1,6.10-1
106	1,8.10-1	$1,6 \cdot 10^{-1}$	1,4.10-1
2 · 106	$1,7 \cdot 10^{-1}$	1,5.10-1	1,1.10-1
5 - 106	1,5.10-1	1,3.10-1	7,8.10-2
107	$1,4\cdot 10^{-1}$	1,1.10-1	5,8.10-2
$2 \cdot 10^7$	1,2.10-1	$8,3 \cdot 10^{-2}$	4,0.10-2
5·10 ⁷	1,0.10-1	5,6·10 ⁻²	2,4.10-2
103	$8,0\cdot 10^{-2}$	3,7.10-2	1,4.10-2
$2 \cdot 10^8$	$6.0 \cdot 10^{-2}$	$2,3\cdot 10^{-2}$	8,0.10_3
5·10 ⁸	$3,9 \cdot 10^{-2}$	1,1.10-2	2,8.10_3
10 ⁹	$2,5 \cdot 10^{-2}$	5,3·10 ⁻³	1,0.10_3
$2 \cdot 10^9$	1,4.10-2	$2,2 \cdot 10^{-3}$	2,5.10_4
5·10 ⁹	$6,0\cdot 10^{-3}$	5,5.10-4	_
1010	$2,6\cdot 10^{-3}$	_	_
2 · 1010	1,0.10-3	_	
5 · 10 ¹⁰	2,0.10-4	_	

7. Значения вероятностей P (> N_{10} , T), P (> N_{30} , T), P (> N_{60} , T) заданного значения полного потока протонов N_E с энергией $E \geqslant 10$, $\geqslant 30$, $\geqslant 60$ МэВ при полетах длительностью $T_1 = 10$ сут, $T_2 = 30$ сут, $T_3 = 183$ сут, $T_4 = 1$ год и $T_5 = 3$ года в активный период 11-летнего цикла, вычисленные по формулам (3—10), представлены на черт. 2—4 и в таблице.

 $\label{eq:podonmenue} \Pi podonmenue$ Для полетов длительностью $T_2{=}\,30\,$ сут

N _E , c _M −2	$P(>N_{10}, T_2)$	$P(>N_{30}, T_3)$	$P(>N_{60}, T_2)$		
105	5,0.10-1	5,0.10-1	4,5·10-1		
$2 \cdot 10^5$	$5,0\cdot 10^{-1}$	4,8.10-1	4,4.10-1		
5 ·10 ⁵	$4,9 \cdot 10^{-1}$	4,7.10-1	4,2.10-1		
10 ³	4,8.10-1	$4,4\cdot 10^{-1}$	$3,8 \cdot 10^{-1}$		
2 · 106	4,6.10-1	4,0.10-1	3,2·10 ⁻¹		
5·10 ⁶	4,2.10-1	$3,5 \cdot 10^{-1}$	$2,4\cdot 10^{-1}$		
107	3,9.10-1	2,9.10-1	1,8.10-1		
2.107	$3,4\cdot 10^{-1}$	2,3.10-1	1,2.10-1		
5·10 ⁷	$2,7 \cdot 10^{-1}$	$1,6 \cdot 10^{-1}$	7,0.10-2		
108	$2, 1 \cdot 10^{-1}$	1,1.10-1	4,3.10-2		
2 · 108	$1,6 \cdot 10^{-1}$	$6.5 \cdot 10^{-2}$	2,5.10-2		
5.103	1,0.10-1	3,5.10-2	9,5·10 ⁻³		
10 ³	$7,0\cdot 10^{-2}$	1,9.10-2	3,3·10 ⁻³		
2·109	4,7.10-2	9,0·10 ⁻³	7,7.10-4		
5·109	2,3.10-2	2,5.10-3	_		
1010	1,2.10-2	7,3.10-4	_		
2.1010	5,0·10 ⁻³	_	_		
5 · 10 ¹⁰	1,1.10-3				
1011	3,0.10-4	_			

 $\label{eq:podon} \mbox{$\Pi$родолжение}$ Для полетов длительностью $T_3 {=} 183$ сут

N _E , cm ⁻²	$P(>N_{10}, T_3)$	$P(>N_{80}, T_{8})$	$P(>N_{60}, T_8)$	
105	1	1		
103	1	1	9,8·10 ⁻¹	
2 • 106	1	9,8.10-1	9,3·10 ⁻¹	
5·10 ⁶	1	9,3·10 ⁻¹	8,4·10 ⁻¹	
107	$9,7 \cdot 10^{-1}$	9,0.10-1	7,5·10 ⁻¹	
$2 \cdot 10^7$	9,4.10-1	8, 1 · 10 ⁻¹	$6,2\cdot 10^{-1}$	
5 · 107	8,9-10-1	$6,9 \cdot 10^{-1}$	4,4·10 ⁻¹	
108	8,5.10-1	5,6·10 ⁻¹	$2,9 \cdot 10^{-1}$	
2·108	7,6.10-1	4,2.10-1	1,7.10-1	
5.108	5,9.10-1	$2,4\cdot 10^{-1}$	$6,4\cdot10^{-2}$	
109	$4,4\cdot 10^{-1}$	1,2.10-1	2,3.10-2	
2·109	2,8.10-1	5,3.10-2	5,0·10 ⁻³	
$5 \cdot 10^9$	1,3.10-1	1,3.10-2	_	
1010	6,3.10-2	$2,1\cdot 10^{-3}$		
2.1010	2,5.10-2		_	
5 · 1010	6,0·10 ⁻³	_	-	
1011	$1,7 \cdot 10^{-3}$	_		

Продолжение

Для полетов длительностью $T_4 = 1$ год

N _E , cm ^{−2}	$P\left(>N_{i0},\ T_{i}\right)$	$P(>N_{30}, T_4)$	$P(>N_{60}, T_4)$	
105	I	1		
106	1	1	1	
107	1	1	$9,8 \cdot 10^{-1}$	
$2 \cdot 10^7$	1	1	9,0·10 ⁻¹	
5.107	1	9,8.10-1	7,8 10 ⁻¹	
1 O ³	1	8,5.10-1	$6,0\cdot 10^{-1}$	
$2 \cdot 10^8$	9,8.10 ⁻¹	$7,1\cdot 10^{-1}$	3,8·10 ⁻¹	
$5\cdot 10^8$	8,5·10 ⁻¹	4,5.10-1	1,5.10-1	
109	7,5·10 ⁻¹	2,6.10-1	$5,7 \cdot 10^{-2}$	
$2\cdot 10^9$	5,5·10 ⁻¹	$1,2\cdot 10^{-1}$	$1,2 \cdot 10^{-2}$	
5 · 109	3,1·10 ⁻¹	$3,2\cdot 10^{-2}$	7,5.10-4	
1010	1,6.10-1	$6,0\cdot 10^{-3}$	_	
2 · 1010	$7,2\cdot 10^{-2}$		_	
5·10 ¹⁰	$1,5 \cdot 10^{-2}$	_	_	
1011	$4,0.10^{-3}$	_	_	
2 · 1011	9,0.10-4	_	_	

Продолжение

Для полетов длите	льностью 1	5 = 3	года
-------------------	------------	-------	------

N _E , c _м −2	$P(>N_{10}, T_5)$	$P(>N_{30}, T_5)$	$P(>N_{60}, T_5)$	
105	1	1		
103	1	1	1	
107	1	1	1	
109	1	1	9,6·10 ⁻¹	
2 · 103	1] 1	8,5·10 ⁻¹	
5.109	1	9,0.10-1	5,9·10 ⁻¹	
109	1	$7,2\cdot 10^{-1}$	2,6·10 ⁻¹	
2 · 109	$9,7 \cdot 10^{-1}$	5, 1·10 ⁻¹	$6,0\cdot 10^{-2}$	
5 · 103	8,0.10-1	1,8.10-1	2,7·10 ⁻³	
1010	5,8·10 ⁻¹	$3.0 \cdot 10^{-2}$	_	
2.1010	3,0·10 ⁻¹	$1,7 \cdot 10^{-3}$	_	
5.1010	$7,5 \cdot 10^{-2}$		_	
1011	$1,4\cdot 10^{-2}$	_		
2 · 1011	$2,6\cdot 10^{-3}$		_	
			1	

- 8. Параметры и зависимости, приведенные в настоящем стандарте, обеспечивают расчет вероятности превышения заданного значения полного потока протонов P ($>N_E$, T) с погрешностью не более 20%.
- 9. Значения вероятности P (N_E , T) для полетов произвольной длительности T в интервале от 10 сут до 3 лет в течение активного периода 11-летнего цикла при использовании данных, приведенных на черт. 2—4 и в таблице, определяют методом интерполяции.

Изменение № 1 ГОСТ 25645.134—86 Лучи космические солнечные. Модель нетоков протонов

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 21.11.90 3 2881

Дата введения 01.07.91

Наименование стандарта изложить в новой редакции: «Лучи космические солнечные. Характеристики потоков протонов.

Solar cosmic rays, Characteristics of proton fluxes». Пункт 1. Первый абзац изложить в новой редакции: «Настоящий стандар» устанавливает характеристики полных потоков протонов солнечных космических лучей (СКЛ) в интервале энергий от 10 до 500 МэВ в межиланетном пространстве вне магнитосферы Земли в плоскости эклиптики на гелиоцентраческом расстоянии ~ 1 а. е. в различные периоды 11-летнего цикла солнечнов активности (далее 11-летнего цикла)»;

дополнить абзацем: «Требования настоящего стандарта явдяются рекомен-

дуемыми».

Пункт 5 дополнить словами: «Интегральный энергетический спектр полема потоков протонов в СПС, определяемый по формуле

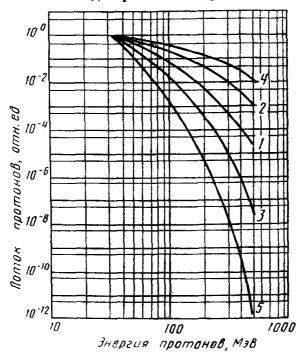
$$N_E = N_{30} \cdot \exp\left(\frac{239 - R_E}{R_0}\right) , \qquad (5a)$$

где R_E — жесткость протонов, МВ, вычисляемая по формуле

$$R_F = (E^2 + 1876E)^{1/2} , (56)$$

где Е — кинетическая энергия протонов, МэВ;

 R_0 — характеристическая жесткость интегрального энергетического спектра, вероятность реализаций которой в некоторых интервалах вначения. рассчитанная из распределения (5), представлена в табл. 1.


Таблица 1 Вероятность реализации R_0 в некоторых интервалах значений

Интервал $R_{\scriptscriptstyle 0}$, МВ	Вероят н о сть, %	Интервал <i>R</i> _o , MB	Вероятность, %
От 20 до 40 включ.	6,5	Св. 120 до 140 включ.	8,0
Св. 40 » 60 »	20,0	» 140 » 160 »	4,2
» 60 » 80 »	23,0	» 160 » 180 »	2,7
> 80 > 100 >	19,0	* 180 * 200 *	1,6
> 100 > 120 >	12,0	* 200 * 220 *	0.9

(Продолжение см. с. 160)

Стандарт дополнить пунктом — 5a и чертежом — 1a: «5a. Интегральные энергетические спектры полных потоков протонов для различных значений R_0 при N_{30} — 1 представлены на черт. 1a и в табл. 2.

Интегральные энергетические спектры для различных R_0

1 — для R_0 =80 MB, где 1g 80=1,9 — среднее вначение распределения (5); 2 — для R_0 =127 MB, где 1g 127=1,9+1 σ , где σ =0,2 — среднеквадратичное отклонение распределения (5); 3 — для R_0 =50,5 MB, где 1g 50,5=1,9—1 σ ; 4 — для R_0 =201 MB, где 1g 201=1,9+2 σ ; 5 — для R_0 =32 MB, где 1g 32=1,9—2 σ . Вероятность реализации эневтетических спектров внутри области между кривыми 2 и 3 составляет 68 %, а внутри области между кривыми 4 и 5 — 95,5 %.

Черт. Іа

(Продолжение см. с. 161)

(Продолжение изменения к ГОСТ 25645.134—86) Таблица 2

Интегральные энергетические спектры полных потоков протонов для различных значений R_0 при $N_{30}=1$

Энергия Жесткость		Полиый поток протонов с энергией больше E,N_E , отн. ед.				
претонов Е, МэВ	протонов протонов,	$R_0=80$ MB	R ₀ =127 MB	R ₀ =50,5 MB	R ₀ =201 MB	R₀=32 MB
3 0	239	1	1	I	I	1
60	341	2,8-10 -1	4,5.10-1	1,3-10-1	6,0-10-1	3,7-10-2
10 0	444	7,7-10-2	2,0-10-1	1,7.10-2	3,6-10-1	1,6-10-
150	551	2,0.10-2	8,5-10-3	2,1.10-3	2,1-10-1	5,6-10-8
200	644	6,3·1 0-³	4,1.10-3	3,3-10-4	1,3-10-1	3,0.10-6
300	808	8,2-10-4	1,1-10-2	1,3-10-5	5,9-10-3	1,7-10⊢-8
500	1090	2,4·10-5	1,2.10-8	4,8-10-*	1,5-10-2	2,5-10-12

(Продолжение см. с. 162)

Пункт 6. Ваменить слова: «где K — число СПС» на «где k — число СПС ва время T»; «где $\phi[N_{30}(N_E)]^{30}$ — функция, получаемая из формулы (4) при подстановке вместо N_{30} значения N_E , вычисляемого по формуле» на «где $\phi[N_{30}(N_E)]$ — функция, получаемая из формулы (4) при подстановке вместо N_{20} вначения N_E , вычисляемого по формуле (5а)»; формулы (9) и (10) с экспликациями исключить.

Пункт 7. Заменить слова: «вычисленные по формулам (3-10), представлены на черт. 2-4 и в таблице» на «вычисленные по формуле (6), представлены на черт, 2-4 и в табл. 3».

Пункт 9. Заменить слова: «и в таблице,» на «и в табл. 3,»; таблицу дополнить словами: «Таблица 3».

(ИУС № 2 1991 г.)

Редактор *М. В. Глушкова* Технический редактор *М. И. Максимова* Корректор *В. Ф. Малютина*

Сдано в наб. 02.03.86 Подп. в печ. 28.03.86 1,0 усл. п. ж. 1,0 усл. кр.-отт. 0,64 уч.-изд.-л. Тир. 6000

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник», Москва, Лялин пер., 6. Зак. 1873