ПРОДУКТЫ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

МЕТОДЫ ОПРЕДЕЛЕНИЯ МИНЕРАЛЬНЫХ ПРИМЕСЕЙ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРОДУКТЫ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

ΓΟCT 25555.3—82

Методы определения минеральных примесей

Fruit and vegetable products.

Methods for determination of mineral impurities

Взамен

ГОСТ 8756.4—70 в части продуктов переработки плодов и овощей, ГОСТ 13340.2—77 в части разд. 2, ГОСТ 13340.4—77 в части разд. 3

MKC 67.080.01

Постановлением Государственного комитета СССР по стандартам от 27.12.82 № 5131 дата введения установлена

01.07.83

Ограничение срока действия снято Постановлением Госстандарта СССР от 20.12.91 № 2026

Настоящий стандарт распространяется на продукты переработки плодов и овощей, включая продукты питания из картофеля, и устанавливает методы определения минеральных примесей. Требования настоящего стандарта являются обязательными.

1. ОТБОР И ПОДГОТОВКА ПРОБ

- 1.1. Отбор проб по ГОСТ 1750—86, ГОСТ 13341—77, ГОСТ 26313—84, ГОСТ 28741—90. (Измененная редакция, Изм. № 1).
- 1.2. Подготовка проб по ГОСТ 1750—86, ГОСТ 13341—77, ГОСТ 26671—85, ГОСТ 28741—90. (Введен дополнительно, Изм. № 1).

2. МЕТОД ОПРЕДЕЛЕНИЯ МИНЕРАЛЬНЫХ ПРИМЕСЕЙ ФЛОТАЦИЕЙ В ВОДЕ В ПРОДУКТАХ ПЕРЕРАБОТКИ ПЛОДОВ И ОВОЩЕЙ

2.1. Сущность метода

Метод основан на отделении нерастворимых минеральных примесей из продукта водой с последующим озолением полученного осадка и количественном определении его массы.

2.2. Аппаратура и материалы

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104—88* с наибольшим пределом взвешивания 200 г, не ниже 2-го класса точности.

Весы лабораторные общего назначения с метрологическими характеристиками по ГОСТ 24104—88* с наибольшим пределом взвешивания 500 г, 4-го класса точности.

Электропечь сопротивления камерная лабораторная, обеспечивающая поддержание заданного температурного режима от 150 до 500 °C с погрешностью не более 25 °C.

Шкаф сушильный лабораторный, обеспечивающий поддержание заданного температурного режима от 40 до 150 °C с погрешностью не более 5 °C.

Электроплитка бытовая по ГОСТ 14919—83 или лампа инфракрасная мощностью 500 Вт.

Издание официальное

Перепечатка воспрещена

 \star

Издание (февраль 2011 г.) с Изменением № 1, утвержденным в декабре 1991 г. (ИУС 4—92).

© Издательство стандартов, 1982 © СТАНДАРТИНФОРМ, 2011

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001. На территории Российской Федерации действует ГОСТ Р 53228—2008.

С. 2 ГОСТ 25555.3—82

Эксикатор по ГОСТ 25336—82 с подходящим агентом для сушки.

Тигли фарфоровые по ГОСТ 9147—80.

Фильтры обеззоленные.

Стаканы с носиком по ГОСТ 25336-82 вместимостью 50, 1000 см³.

Трубки каучуковые, полихлорвиниловые или резиновые.

Воронка делительная по ГОСТ 25336—82 вместимостью $1000~{\rm cm^3}$ с резиновой пробкой, имеющей два отверстия.

Палочка из химико-лабораторного стекла по ГОСТ 21400—75.

Вата медицинская гигроскопическая по ГОСТ 5556—81.

 Π р и м е ч а н и е. Допускается использование аппаратуры с техническими характеристиками не ниже указанных.

(Измененная редакция, Изм. № 1).

2.3. Подготовка к испытанию

Тигли промывают горячей водой, кипятят в течение 10 мин в концентрированной соляной кислоте в сосуде, накрытом часовым стеклом, затем тигли промывают водой, ополаскивают дистиллированной водой, сушат в сушильном шкафу, прокаливают при температуре (525 ± 25) °C, охлаждают в эксикаторе и взвешивают на весах не ниже 2-го класса точности.

Процесс повторяют, пока снижение массы тигля окажется не более 0,0010 г.

2.4. Проведение испытания

Навеску массой 100,0 г количественно переносят в химический стакан вместимостью $1000~{\rm cm}^3$ и промывают потоком воды. Для этого в стакан вводят стеклянную трубку с шарообразным расширением, в которое вложен кусочек ваты для улавливания случайных загрязнений. При этом нижний конец трубки не доходит до дна на расстояние $^1/_4$ высоты стакана. Через стеклянную трубку пропускают воду до тех пор, пока минеральные примеси не осядут на дно стакана. Устанавливают такой поток воды, чтобы сосуд вместимостью $1~{\rm zm}^3$ наполнялся водой за $4-5~{\rm mu}$ н. Промывание осадка продолжают $20-30~{\rm mu}$ н до тех пор, пока промывная вода не станет прозрачной. Осадок отфильтровывают через беззольный фильтр.

Промывание допускается проводить в делительной воронке, снабженной двумя изогнутыми стеклянными трубками: короткой, конец которой находится в верхней части воронки, и более длинной, погруженной в узкую часть воронки.

Навеску исследуемого продукта переносят в делительную воронку, частично заполненную водой.

Делительную воронку закрывают пробкой, через которую проходят стеклянные трубки, при этом конец более длинной трубки устанавливают на уровне середины воронки. Другой конец длинной трубки присоединяют к водопроводному крану, из которого пускают поток воды, обеспечивающий наполнение сосуда вместимостью $1\,\mathrm{дm}^3$ за $4-5\,\mathrm{muh}$, чтобы образовать бурление, для отделения от продукта минеральных веществ.

После удаления продукта, находящегося во взвешенном состоянии, стеклянную трубку опускают в узкую часть воронки и проводят промывание до тех пор, пока на дне воронки не останутся только минеральные примеси.

Делительную воронку устанавливают над воронкой с беззольным фильтром и переносят осадок на фильтр, промывая его дистиллированной водой.

Фильтр с осадком помещают в фарфоровый тигель, подготовленный по п. 2.3, сушат в сушильном шкафу, обугливают на плитке или под инфракрасной лампой, прокаливают в муфельной печи при температуре (525 ± 25) °C в течение 30 мин.

После охлаждения в эксикаторе тигель взвешивают на весах не ниже 2-го класса точности.

2.3, 2.4. (Измененная редакция, Изм. № 1).

2.5. Обработка результатов

2.5.1. Массовую долю минеральных примесей (X) в процентах вычисляют по формуле

$$X = \frac{m_2 - m_1}{m} \cdot 100,$$

где m — масса навески пробы, г;

 m_1 — масса тигля, г;

 m_2 — масса тигля с минеральными примесями, г.

2.5.2. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не должно превышать 5 % (P = 0.95).

(Измененная редакция, Изм. № 1).

3. МЕТОД ОПРЕДЕЛЕНИЯ МИНЕРАЛЬНЫХ ПРИМЕСЕЙ ФЛОТАЦИЕЙ В ЧЕТЫРЕХХЛОРИСТОМ УГЛЕРОДЕ В СУШЕНЫХ ПРОДУКТАХ

3.1. Сущность метода

Метод основан на отделении минеральных примесей четыреххлористым углеродом, сушке и взвешивании остатка.

3.2. Аппаратура, материалы и реактивы

Для проведения испытания применяют аппаратуру, материалы и реактивы по п. 2.2 со следующими дополнениями:

- углерод четыреххлористый по ГОСТ 20283—89;
- кальций хлористый технический по ГОСТ 450—77 или кислота серная по ГОСТ 4204—77, плотностью $1840~{\rm kr/m^3}.$
 - 3.3. Проведение испытания

В химический стакан вместимостью 50 см³, предварительно высушенный до постоянной массы, вносят навеску продукта массой 10,000 г. Затем приливают 30 см³ четыреххлористого углерода, тщательно перемешивают стеклянной палочкой в течение 2 мин и, накрыв стакан часовым стеклом, оставляют на 15 мин. После того, как минеральные примеси осядут на дне, стакан осторожно наклоняют и четыреххлористый углерод вместе с плавающими в нем частицами продукта осторожно декантируют. Оставшийся на дне стакана песок и незначительное количество частиц продукта промывают несколько раз небольшими порциями четыреххлористого углерода, причем каждый раз после отстаивания смеси жидкость снова декантируют.

Стакан с осадком минеральных примесей ставят в вытяжной шкаф для удаления паров четыреххлористого углерода, затем сушат в сушильном шкафу при температуре от 125 до 130 °C в течение 45 мин, охлаждают и взвешивают на весах не ниже 2-го класса точности.

- 3.4. Обработка результатов
- 3.4.1. Массовую долю минеральных примесей (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m_4 - m_3}{m_5} \cdot 100,$$

где m_3 — масса стакана, г;

 m_4 — масса стакана с минеральными примесями, г;

 m_5 — масса навески пробы, г.

3.4.2. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не должно превышать 5 % (P=0.95).

(Измененная редакция, Изм. № 1).

4. МЕТОД ОПРЕДЕЛЕНИЯ МИНЕРАЛЬНЫХ ПРИМЕСЕЙ, НЕРАСТВОРИМЫХ В СОЛЯНОЙ КИСЛОТЕ

4.1. Сущность метода

Метод основан на озолении исследуемой пробы, обработке золы соляной кислотой, прокаливании и взвешивании полученного остатка.

4.2. Аппаратура, материалы и реактивы

Для проведения испытания применяют аппаратуру по п. 2.2 со следующими дополнениями:

- баня водяная;
- воронки стеклянные по ГОСТ 25336—82 диаметром 7—9 см;
- колбы стеклянные конические по ГОСТ 25336—82 вместимостью 50, 300 см³;
- стекло часовое;
- кислота соляная по ГОСТ 3118—77 плотностью 1190 кг/м 3 ; раствор с массовой концентрацией 100 г/дм 3 .
 - 4.3. Проведение испытания
 - **4.3.1.** Озоление продукта по ГОСТ 25555.4—91.

C. 4 FOCT 25555.3-82

4.3.2. Для определения минеральных примесей, нерастворимых в соляной кислоте, к золе, полученной по п. 4.3.1, приливают 10 см^3 раствора соляной кислоты, накрывают часовым стеклом и нагревают в течение 15 мин на кипящей бане.

Содержимое тигля фильтруют и промывают горячей дистиллированной водой.

Фильтр с осадком сушат на воронке в сушильном шкафу при температуре от 100 до 105 °C, затем переносят в тот же самый тигель, в котором прежде была сожжена проба, сжигают на небольшом пламени и прокаливают при температуре (525 ± 25) °C, не допуская расплавления золы, охлаждают в эксикаторе и взвешивают. Прокаливание повторяют до тех пор, пока разница между двумя последовательными взвешиваниями составит не более 0.0010 г.

(Измененная редакция, Изм. № 1).

- 4.4. Обработка результатов
- 4.4.1. Массовую долю минеральных примесей, нерастворимых в соляной кислоте, (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{m_7 - m_6}{m_8} \cdot 100,$$

где m_6 — масса тигля, г;

 m_7 — масса тигля с остатком, г;

 $m_{\rm N}$ — масса навески, г.

4.4.2. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, относительное расхождение между которыми не должно превышать 5 % (P = 0.95).

(Измененная редакция, Изм. № 1).