межгосударственный стандарт

ПЕРИКЛАЗ ЭЛЕКТРОТЕХНИЧЕСКИЙ

Метод определения окиси алюминия

ΓΟCT 24523.2—80

Electrotechnical periclase. Method for the determination of aluminium oxide

MKC 81.080

Дата введения 01.07.83

Настоящий стандарт распространяется на электротехнический периклаз и устанавливает фотометрический метод определения массовых долей окиси алюминия в диапазоне от 0,1 до 2,5 %.

Сущность метода заключается в образовании комплексного соединения алюминия с антразохромом в уксуснокислой среде при рН 4,8—4,9 и фотометрировании окрашенного раствора при ллине волны 590 нм.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 24523.0.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

2.1. Для проведения анализа используют:

ступки и пестики фарфоровые № 5 или 7 по ГОСТ 9147;

плитку электрическую с закрытой спиралью;

спектрофотометр или фотоэлектроколориметр любого типа;

натрий углекислый безводный по ГОСТ 83;

натрий тетраборнокислый, 10-водный по ГОСТ 4199, обезвоженный при 400 °C;

смесь для сплавления, приготовленную из углекислого и тетраборнокислого натрия в соотношении 2:1 (по массе);

кислоту соляную по ГОСТ 3118, разбавленную 1:3, 1:1 и раствор 1 моль/дм3;

гидроксиламин солянокислый по ГОСТ 5456, 1%-ный раствор;

спирт этиловый ректификованный технический по ГОСТ 18300;

магния окись по ГОСТ 4526;

раствор фоновый; готовят следующим образом: 0.5 г окиси магния, предварительно прокаленной при 1000 °C в течение 1 ч, и 5.0 г смеси для сплавления растворяют в 60 см 3 соляной кислоты, разбавленной 1:3, кипятят 3-5 мин, охлаждают, переносят в мерную колбу вместимостью 250 см 3 , доливают водой до метки и перемешивают;

 α -динитрофенол, 0,1%-ный спиртовой раствор или β -динитрофенол, 0,1%-ный водный раствор (α - и β -динитрофенол по нормативно-технической документации);

аммиак водный по ГОСТ 3760, разбавленный 1:2;

антразохром по нормативно-технической документации, 0,15%-ный раствор;

натрий уксуснокислый, 3-водный по ГОСТ 199, 5%-ный раствор;

алюминий по ГОСТ 13726;

растворы окиси алюминия стандартные;

раствор A; готовят следующим образом: 0,5294 г алюминия растворяют при нагревании в $40~{\rm cm}^3$ соляной кислоты, разбавленной 1:1, охлаждают, переносят в мерную колбу вместимостью $500~{\rm cm}^3$, доводят водой до метки и перемешивают. $1~{\rm cm}^3$ раствора содержит 0,002 г окиси алюминия;

раствор Б; готовят перед употреблением следующим образом: 10 см^3 раствора А переносят в мерную колбу вместимостью 500 см^3 , прибавляют 50 см^3 соляной кислоты, разбавленной 1:3, доводят водой до метки и перемешивают. 1 см^3 раствора содержит 0,00004 г окиси алюминия;

раствор В; готовят перед употреблением следующим образом: 5 см 3 раствора А переносят в мерную колбу вместимостью 1000 см^3 , прибавляют 100 см^3 соляной кислоты, разбавленной 1:3, доводят водой до метки и перемешивают. 1 см^3 раствора содержит 0,00001 г окиси алюминия.

(Измененная редакция, Изм. № 1).

3. ПРОВЕДЕНИЕ АНАЛИЗА

- 3.1. От анализируемого раствора, полученного по разд. 3 ГОСТ 24523.1, отбирают аликвотную часть в объеме 5 см 3 .
- 3.2. Аликвотную часть анализируемого раствора переносят в мерную колбу вместимостью 100 см^3 , приливают 2 см^3 раствора гидроксиламина, ополаскивают внутреннюю поверхность горла колбы небольшим количеством воды из промывалки и нагревают в течение 3-5 мин, не доводя до кипения, охлаждают, добавляют 2-3 капли α или β -динитрофенола, осторожно, по каплям нейтрализуют раствором аммиака до появления желтого окрашивания. Затем вводят по каплям раствор соляной кислоты 1 моль/дм^3 до исчезновения желтой окраски, добавляют еще $2,5 \text{ см}^3$ раствора соляной кислоты 1 моль/дм^3 , приливают пипеткой 10 см^3 раствора антразохрома, 20 см^3 раствора уксуснокислого натрия, доводят водой до метки и перемешивают.

Оптическую плотность раствора измеряют через 10 мин на спектрофотометре или фотоэлектроколориметре, применяя желтый светофильтр со светопропусканием 590 нм. В зависимости от интенсивности окраски анализируемого раствора применяют кювету с толщиной колориметрируемого слоя 10 или 50 мм.

Для приготовления раствора сравнения в мерную колбу вместимостью 100 см^3 вводят 5 см^3 фонового раствора, 2 см^3 раствора гидроксиламина и далее все применяемые по ходу анализа реактивы, доводят до метки водой и перемешивают.

По величине оптической плотности анализируемого раствора устанавливают массу окиси алюминия по соответствующему градуировочному графику.

(Измененная редакция, Изм. № 1).

3.3. При массовой доле окиси алюминия свыше 2,0 % готовят анализируемый раствор из навески 0,25 г согласно разд. 3 ГОСТ 24523.1 и анализируют согласно пп. 3.1 и 3.2 настоящего стандарта.

3.4. Построение градуировочного графика при массовой доле окиси алюминия до 0,4 %

В мерные колбы вместимостью по 100 см^3 каждая отбирают микробюреткой 0,5; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ раствора В, что соответствует 0,000005; 0,00001; 0,00002; 0,00003; 0,00004 и 0,00005 г окиси алюминия. В каждую колбу приливают 2 см³ раствора гидроксиламина, 5 см³ фонового раствора, добавляют 2—3 капли α - или β -динитрофенола, осторожно, по каплям нейтрализуют раствором аммиака до появления желтого окрашивания. Затем вводят по каплям раствор соляной кислоты 1 моль/дм³ до исчезновения желтой окраски, добавляют еще 2,5 см³ раствора соляной кислоты 1 моль/дм³, приливают пипеткой 10 см^3 раствора антразохрома, 20 см^3 раствора уксуснокислого натрия, доводят водой до метки и перемешивают.

Оптическую плотность растворов измеряют через 10 мин на спектрофотометре или фотоэлектроколориметре, применяя желтый светофильтр со светопропусканием 590 нм и кювету с толщиной колориметрируемого слоя 50 мм.

Раствор сравнения готовят по п. 3.2.

(Измененная редакция, Изм. № 1).

3.5. Построение градуировочного графика при массовой доле окиси алюминия свыше 0,4 %

В мерные колбы вместимостью по 100 см^3 каждая отбирают микробюреткой 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 4.0 и 5.0 см³ раствора 6, что соответствует 0.00002; 0.00004; 0.00006; 0.00008; 0.00010; 0.00012; 0.00016 и 0.00020 г окиси алюминия и далее проводят анализ, как указано в п. 3.4, измеряя оптическую плотность растворов в кювете с толщиной колориметрируемого слоя 10 мм.

3.6. По полученным средним значениям оптической плотности растворов и известным массам окиси алюминия строят градуировочные графики.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю окиси алюминия (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m_1 \cdot V \cdot 100}{m \cdot V_1} \,,$$

где m_1 — масса окиси алюминия, найденная по градуировочному графику, г;

V— общий объем анализируемого раствора, см³;

m — масса навески, г;

 V_1 — объем аликвотной части анализируемого раствора, см³.

4.2. Нормы контроля точности определения массовой доли окиси алюминия приведены в табл. 1.

Таблица 1

Массовая доля окиси алюминия, %	Δ, %	Допускаемое расхождение, %		
		d_2	d_{κ}	δ
От 0,1 до 0,2 включ. Св. 0,2 » 0,5 » » 0,5 » 1,0 » » 1,0 » 2,5 »	0,04 0,07 0,09 0,13	0,04 0,07 0,10 0,14	0,05 0,08 0,12 0,16	0,03 0,04 0,06 0,08

(Измененная редакция, Изм. № 2).

С. 4 ГОСТ 24523.2-80

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

В.С. Турчанинов; канд. техн. наук А.И. Узберг; Г.Г. Лопачак; А.С. Бородачев; Н.А. Бобылева; канд. техн. наук И.М. Лоскутова

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.12.80 № 6282

Изменение № 2 принято Межтосударственным советом по стандартизации, метрологии и сертификации (протокол № 11 от 25.04.97)

Зарегистрировано Техническим секретариатом МГС № 2505

За принятие изменения проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Республика Казахстан	Азгосстандарт Армгосстандарт Госстандарт Беларуси Госстандарт Республики Казахстан
Республика Молдова Киргизская Республика Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Молдовастандарт Киргизстандарт Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт Украины

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
<u>ΓΟCT</u> 83—79	2.1
ГОСТ 199—78	2.1
ΓΟCT 3118—77	2.1
ГОСТ 3760—79	2.1
ГОСТ 4199—76	2.1
ГОСТ 4526—75	2.1
ГОСТ 5456—79	2.1
ΓΟCT 9147—80	2.1
ΓΟCT 13726—97	2.1
ГОСТ 18300—87	2.1
ГОСТ 24523.0—80	1.1
ΓΟCT 24523.1—80	3.1, 3.3

- Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в октябре 1987 г., сентябре 1997 г. (ИУС 1—88, 12—97)