межгосударственный стандарт

ГАЗЫ ГОРЮЧИЕ ПРИРОДНЫЕ

Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе **ΓΟ**CT **22667—82**

Combustible natural gases. Calculation method for determination of calorific value, specife gravity and Wobbe index

Взамен ГОСТ 22667—77

MKC 75.160.30

Постановлением Государственного комитета СССР по стандартам от 23 августа 1982 г. № 3333 дата введения установлена

01.07.83

Ограничение срока действия снято по протоколу № 4—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4—94)

Настоящий стандарт устанавливает методы расчета высшей и низшей теплоты сгорания, относительной плотности и числа Воббе сухих природных углеводородных газов по компонентному составу и известным физическим величинам чистых компонентов.

Стандарт не распространяется на газы, в которых фракция углеводородов C_{6+ высшие превышает 0.1~%.

(Измененная редакция, Изм. № 1).

1. ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ СГОРАНИЯ

- 1.1. Теплоту сгорания газа объемную (высшую или низшую) вычисляют по компонентному составу и теплоте сгорания отдельных компонентов газа.
- 1.2. Компонентный состав газа определяют по ГОСТ 23781—87 методом абсолютной калибровки. Определяют все компоненты, объемная доля которых превышает 0,005 %, кроме метана, содержание которого рассчитывают по разности 100 % и суммы всех компонентов.
 - 1.1, 1.2. (Измененная редакция, Изм. № 1).
- 1.3. Теплоту сгорания (Q) высшую ($Q_{\rm B}$) или низшую ($Q_{\rm H}$) в МДж/м³ (ккал/м³) вычисляют по формуле

$$Q = \sum_{i=1}^{n} Q_i \cdot C_i,$$

где Q_i — теплота сгорания газа (высшая или низшая) i-го компонента газа (приложение); C_i — доля i-го компонента в газе.

2. ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ

2.1. Относительную плотность (d) вычисляют по формуле

$$d=\sum_{i=1}^n d_i\cdot C_i,$$

где d_i — относительная плотность i-го компонента газа (приложение).

Издание официальное

Перепечатка воспрещена

3. ОПРЕДЕЛЕНИЕ ЧИСЛА ВОББЕ

3.1. Число Воббе (W) (низшее или высшее) в МДж/м³ (ккал/м³) вычисляют по формуле

$$W = \frac{Q}{\sqrt{d}}$$
.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 4.1. При расчетах допускается не учитывать теплоту сгорания и относительную плотность компонентов газа, значения которых менее 0.005 MДж/м^3 (1 ккал/м³) и 0.0001 соответственно.
- 4.2. Значение теплоты сгорания компонентов округляют до $0{,}005 \text{ МДж/м}^3$ (1 ккал/м³), конечный результат округляют до $0{,}05 \text{ МДж/м}^3$ (10 ккал/м³).
- 4.3. Значение относительной плотности компонентов округляют до 0,0001, конечный результат до 0,001 единиц относительной плотности.
- 4.4. При записи результатов определения необходимо указывать температурные условия (20 °C или 0 °C).

5. ТОЧНОСТЬ МЕТОДА

Сходимость

Теплота сгорания газа, рассчитанная из последовательно выполненных двух анализов одного образца газа одним исполнителем, с использованием одного и того же метода и прибора, признается достоверной (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 0.1 %.

Разд. 5. (Введен дополнительно, Изм. № 1).

ПРИЛОЖЕНИЕ Обязательное

Таблица 1
Высшая и низшая теплота сгорания и относительная плотность* компонентов сухого природного газа при 0 °C и 101,325 кПа**

mpi							
Наименование компонента	Формула						
		высшая		низшая		Относительная плотность	
		МДж/м³	ккал/м ³	МДж/м³	ккал/м ³		
Метан Этан Пропан н-бутан и-бутан Пентаны Гексаны Гептаны Октаны Нонаны Бензол Толуол Водород Окись углерода	CH ₄ C ₂ H ₆ C ₃ H ₈ <i>H</i> -C ₄ H ₁₀ <i>u</i> -C ₄ H ₁₀ C ₅ H ₁₂ C ₆ H ₁₄ C ₇ H ₁₆ C ₈ H ₁₈ C ₉ H ₂₀ C ₆ H ₆ C ₇ H ₈ H ₂ CO	39,82 70,31 101,21 133,80 132,96 169,27 187,40 216,88 246,18 276,33 162,615 176,26 12,75 12,64	9510 16790 24170 31960 31760 40430 44760 51800 58800 66000 38730 42100 3040 3020	35,88 64,36 93,18 123,57 122,78 156,63 173,17 200,55 227,76 250,23 155,67 168,18 10,79 12,64	8570 15370 22260 29510 29320 37410 41360 47900 54400 61200 37180 40170 2580 3020	0,5548 1,048 1,554 2,090 2,081 2,671 2,976 3,460 3,945 4,41 2,967 3,18 0,0695 0,9671	
Сероводород Двуокись углерода	H ₂ S CO ₂	25,35	6050	23,37	5580	1,188 1,529	

ГОСТ 22667—82 С. 3

Продолжение табл. 1

Наименование компонента	Формула					
		высшая		квшеин		Относительная плотность
		МДж/м³	ккал/м ³	МДж/м³	ккал/м ³	
Азот Кислород Гелий	N ₂ O ₂ He	_ _ _	_ _ _	_ _ _	_ _ _	0,967 1,105 0,138

Таблица 2 Высшая и низшая теплота сгорания и относительная плотность* компонентов сухого природного газа при 20 °C и 101,325 к Π a**

Наименование компонента	Формула					
		высшая		низшая		Относительная плотность
		МДж/м ³	ккал/м ³	МДж/м ³	ккал/м ³	7
Метан	CH ₄	37,10	8860	33,41	7980	0,5546
Этан	C_2H_6	65,38	15620	59,85	14300	1,046
Пропан	C_3H_8	93,98	22450	86,53	20670	1,549
<i>н</i> -бутан	μ -C ₄ H ₁₀	123,78	29550	114,27	27290	2,071
<i>и</i> -бутан	$u-C_4H_{10}$	123,25	29440	113,81	27180	2,068
Пентаны	C_5H_{12}	155,65	37180	144,02	34400	2,637
Гексаны	$C_6^{5}H_{14}^{12}$	174,62	41710	161,36	38540	2,976
Гептаны	C_7H_{16}	202,10	48270	186,87	44630	3,460
Октаны	C_8H_{18}	229,38	54790	212,22	50690	3,945
Нонаны	C_0H_{20}	257,48	61500	238,76	57030	4,41
Бензол	C_6H_6	151,09	36090	145,05	34640	2,967
Толуол	C_7H_8	164,24	39230	156,71	37430	3,18
Водород	H_2	11,87	2840	10,05	2400	0,0695
Окись углерода	CO	11,78	2810	11,78	2810	0,9671
Сероводород	H_2S	23,60	5640	21,75	5200	1,188
Двуокись углерода	CO_2	_	_	<u> </u>	_	1,528
Азот	N ₂	_	-	-	-	0,967
Кислород	O_2^2	-	_	-	-	1,105
Гелий	He	_	_	–	_	0,138

^{*} Плотность воздуха принята равной 1.
** Данные таблицы приведены с учетом коэффициента сжимаемости Z.

^{*} Плотность воздуха принята равной 1. ** Данные таблицы приведены с учетом коэффициента сжимаемости Z.