межгосударственный стандарт

СМОЛЫ ИОНООБМЕННЫЕ

КАТИОНИТЫ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

межгосударственный стандарт

Смолы ионообменные

КАТИОНИТЫ

Технические условия

ГОСТ 20298—74

Ion-exchange resins. Cation exchangers. Specifications

MKC 71.080.99 71.100 ΟΚΠ 22 2700

Дата введения 01.01.76

Настоящий стандарт распространяется на сильнокислотные и слабокислотные катиониты, представляющие собой высокомолекулярные полимерные соединения трехмерной гелевой и макропористой структуры, содержащие функциональные группы кислотного характера, способные к реакциям катионного обмена. Катиониты нерастворимы в воде, растворах минеральных кислот, щелочей и в органических растворителях.

Катиониты предназначены для очистки, извлечения, концентрирования и разделения веществ в различных областях народного хозяйства, для аналитических целей, а также в качестве катализаторов в органическом синтезе.

Применение какой-либо марки катионита в пищевой или фармацевтической промышленности в каждом отдельном случае должно быть согласовано с Министерством здравоохранения СССР.

Катиониты являются невзрывоопасными, невоспламеняющимися продуктами и не оказывают токсического воздействия на организм человека.

(Измененная редакция, Изм. № 5).

1. МАРКИ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. В зависимости от свойств и назначения устанавливаются марки катионитов, указанные в табл. 1.

Таблица 1

Марки	Функциональные группы	Ионная форма товарного катионита	Тип	Структура	Рекомендуемые области применения				
Сильнокислотные									
КУ-2—8	Сульфогруппа	Водородно- солевая	Полимериза- ционный	Гелевая	Водоподготовка, гидрометаллургия, гальванотехника, очистка сточных вод				
КУ-2—8чС	То же	Водородная	То же	То же	Глубокая очистка воды, разделение различных элементов, получение особо чистых веществ в пищевой, медицинской и фармацевтической промышленности				

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1974 © ИПК Издательство стандартов, 2003

Марки	Функциональные группы	Ионная форма товарного катионита	Тип	Структура	Рекомендуемые области применения			
КУ-2—20	Сульфогруппа	Водородная	Полимериза- ционный	Гелевая	Очистка растворов ан- тибиотиков			
КУ-1	Сульфо- и фе- нольная группы	То же	Поликонден- сационный	То же	Очистка гидролизаторов растительного сырья, водоподготовка			
КУ-23 в модифи- кациях: 10/60 15/100 30/100	Сульфогруппа	Солевая	Полимериза- ционный	Макро- пористая	Водоподготовка, разделение и выделение цветных и редких металлов, гальванотехника, разделение и очистка различных веществ в химической промышленности, органический катализ			
Слабокислотные								
КБ-2	Карбоксиль- ная группа	Натриевая	Полимериза- ционный	Гелевая	Сорбция антибиотиков из растворов			
КБ-2Н-2,5	То же	То же	То же	То же	То же			
КБ-4	Карбоксиль- ная группа	Натриевая	Полимериза- ционный	Гелевая	Удаление бикарбонатной жесткости воды, селективное удаление малых количеств двухвалентных катионов для удаления стрептомицина из нативных растворов			
КБ-4П-2	То же	То же	То же	То же	Очистка воды			

(Измененная редакция, Изм. № 5).

1.1а. По Общесоюзному классификатору промышленной и сельскохозяйственной продукции код ОКП для каждой марки смолы должен соответствовать указанному в табл. 1а.

Таблица 1а

Марки	Код ОКП	Марки	Код ОКП
КУ-2—8, высший сорт	22 2731 0101	КУ-23 15/100	22 2721 0300
КУ-2-8, первый сорт	22 2731 0102	КУ-23 30/100	22 2721 0400
КУ-2—8чС	22 2731 0300	КБ-2	22 2723 0100
КУ-2—20	22 2731 0600	КБ-2Н-2,5	22 2723 0800
КУ-1	22 2721 0100	КБ-4	22 2723 0200
КУ-23 10/60	22 2721 0200	КБ-4П-2	22 2723 1000

(Измененная редакция, Изм. № 2, 3, 4, 5).

1.2. По физико-химическим показателям катиониты должны соответствовать требованиям и нормам, указанным в табл. 2 и табл. 3.

ГОСТ 20298—74 С. 3

Таблица 2

	Норма для марки								
Наименование	K3-2-0			КУ-23					Метод испы-
показателя	Высший сорт	1 сорт	КУ-2—8чС	КУ-2—20	КУ-1	10/60	15/100	30/100	тания
1. Внеш- ний вид	невого цвета		Сферические зерна от желтокоричневого до черного цвета	Зерна неправиль- ной формы черного или темно- коричнево- го цвета	Сферические зерна от светло-серого до темно-серого цвета		По п. 3.2		
2. Грану- лометричес- кий состав:									По ГОСТ 10900 и п. 3.3 нас-
а) размер зерен, мм	0,315—	-1,250	0,4—1,25	0,315—1,250	0,4—2,0	0,	315—1,2	50	тоящего стандарта
б) объем- ная доля ра- бочей фрак- ции, %, не менее	96	95	96	95	92	95	95	96	
в) эффек- тивный раз- мер зерен, мм	0,40— 0,55	0,35— 0,55	0,45—0,65	_	_	_	_	_	
г) коэф- фициент од- нородности, не более	1,7	1,8	1,7	_	_	_	_	_	
3. Массовая доля влаги, %	48— 58	48— 58	48— 58	30—40	45—55	50— 70	50— 70	50— 70	По ГОСТ 10898.1
4. Удельный объем см ³ /г, в Н-форме, не более 5. Удельная поверхность, м ² /г	2,8	2,8	2,7	1,9	3,2	4,0	3,7 25—40	3,3	По ГОСТ 10898.4 и п. 3.4 нас- тоящего стандарта По ГОСТ 10898.5
6. Полная статическая обменная емкость, ммоль/см ³ (мг-экв/см ³), не менее	1,8	1,8	1,80	2,20	1,35	1,10	1,25	1,00	По ГОСТ 20255.1
7. Дина- мическая об- менная емкость моль/м ³ (г·экв/м ³), не менее:									По ГОСТ 20255.2 и п. 3.6 нас- тоящего стандарта
с полной регенерацией ионита	_	_	1600	_	565	_	_	_	

	Норма для марки								
Наименование	КУ-2—8						КУ-23		Метод
показателя	Высший сорт	1 сорт	КУ-2—8чС КУ-2—20		КУ-1	10/60	15/100	30/100	испытания
с заданным расходом ре- генерирующе- го вещества	526	520	_	_	_	410	400	_	
8. Окис- ляемость фильтрата в пересчет на кислород, мг/г, не более	_	_	0,5	_	1,8	_			По п. 3.7
9. Осмотическая стабильность, %, не менее	94,5	85	96	_	92	93	90	96	По ГОСТ 17338
10. Вели- чина рН фильтрата, не менее		_	4,5	_	_	_	_	_	По п. 3.8
11. Массовая доля железа, %, не более	_	_	0,03	_	_	_		_	По ГОСТ 12868
12. Массовая доля иона хлора, мг/см ³ , не более	_	_	0,0015	_	_	_	_	_	По ГОСТ 15615
13. Сорб- ционная ем- кость по стреп- т о м и ц и н у , мкг/г, не более		_	_	6000	_		_	_	По п. 3.9

Примечания:

- 1. При выражении полной обменной емкости и динамической обменной емкости катионитов в миллимоль на кубический сантиметр и моль на кубический метр соответственно под словом «моль» имеется в виду молярная масса эквивалента катиона М (Na⁺, K⁺, 1/2 Ca²⁺, 1/2 Mg²⁺ и т. д.).

 2. Катионит марки КУ-23 модификации 15/100, предназначенный для производства электроноионооб-
- менников, выпускается с зернами размером 0,4—1,25 мм.
- 3. Катионит марки КУ-2—8, предназначенный для производства гетерогенных мембран, выпускается с удельным объемом в H-форме 2,3—2,8 см³/г.

Таблица 3

Наименование показателя	КБ-2	КБ-2Н—2,5	КБ-4	КБ-4П-2	Метод испытания	
1. Внешний вид	Сферическ го цвета	ие зерна бело-		кие зерна от бе- ого или розового	По п. 3.2	

Продолжение табл. 3

· 					
Наименование показателя	КБ-2	КБ-2Н—2,5	КБ-4	КБ-4П-2	Метод испытания
		Первая катег	гория качества		
2. Гранулометричес- кий состав:					По ГОСТ 10900 и п. 3.3 настоящего
а) размер зерен, мм	0,315—1,6	0,315—1,6	0,315—1,6	0,315—1,6	стандарта
б) объемная доля ра- бочей фракции, %, не менее	93	93	90	95	
в) эффективный размер зерен, мм, не более	0,5	0,5	0,5	0,6	
г) коэффициент од- нородности, не более	2,5	2,5	2,3	2,5	
3. Массовая доля влаги, %	70—80	70—80	55—65	65—75	По ГОСТ 10898.1
4. Удельный объем, cm^3/r , не более:					По ГОСТ 10898.4 и п. 3.4 настоящего
а) в Н-формеб) в Nа-форме	4,0 9,0	4,0 7,5	2,5 4,0	2,8 6,0	стандарта
5. Полная статичес- кая обменная емкость, ммоль/см ³ (мг-экв/см ³), не менее	2,5	3,0	3,5	3,5	По ГОСТ 20255.1
6. Окисляемость фильтрата в пересчете на кислород, мг/г, не более	1,0	1,0	0,9	_	По п. 3.7
7. Осмотическая стабильность, %, не менее	60	90	60	75	По ГОСТ 17338
8. Сорбционная емкость по стрептомицину, мкг/г, не менее	1000000	1100000	_	_	По п. 3.9

Примечания:

- 1. При выражении полной обменной емкости катионитов в миллимоль на кубический сантиметр под словом «моль» имеется в виду молярная масса эквивалента катиона M (Na^+ , K^+ , 1/2 Ca^{2^+} , 1/2 Mg^{2^+} и т. д.).

 2. Для катионитов марок Kb-2H-2,5 и Kb-2 при определении показателя 7 гранулы, имеющие много-
- 2. Для катионитов марок КБ-2H—2,5 и КБ-2 при определении показателя 7 гранулы, имеющие многогранники неправильной формы в центре, считать целыми.

(Измененная редакция, Изм. № 4, 5).

1.3. Замороженные катиониты перед употреблением выдерживают в помещении при 10—20 °C в таре изготовителя в течение 2—4 суток.

2. ПРАВИЛА ПРИЕМКИ

2.1. Приемка катионитов должна производиться партиями. За партию принимают количество катионита одной марки, однородного по своим качественным показателям и сопровождаемого одним документом о качестве. Масса партии в пересчете на сухой продукт должна быть не более 5 т. Каждая партия катионита должна сопровождаться документом, удостоверяющим соответствие ее требованиям настоящего стандарта. Документ должен содержать следующие реквизиты:

С. 6 ГОСТ 20298-74

наименование и товарный знак предприятия-изготовителя;

наименование и марку катионита;

номер партии;

дату изготовления;

массу нетто;

количество мест партии;

результаты проведенных испытаний или подтверждение о соответствии партии катионита требованиям настоящего стандарта.

(Измененная редакция, Изм. № 4).

2.2. Для проверки качества поступившей партии катионита, количество мест в которой превышает 15 единиц продукции, пробу отбирают не менее чем от 20 % единиц продукции, при меньшем количестве — от трех единиц продукции. При поступлении катионита в контейнерах разового использования пробы следует отбирать из каждого контейнера.

(Измененная редакция, Изм. № 4, 5).

2.3. Испытания по показателям 2,а; 2,6; 4—6; 8—13 табл. 2 для катионитов КУ-2—8, КУ-2—8чС и КУ-1 и показателю 7 табл. 2 для катионитов КУ-2—8, КУ-2—8чС и КУ-1 изготовитель проводит периодически на каждой 15-й партии. Для катионитов КУ-2—8 и КУ-2—8чС испытания по показателям 2,в; 2,г табл. 2 изготовитель проводит на каждой 100-й партии.

Для катионитов КБ-2, КБ-2H-2,5, КБ-4 и КБ-4П-2 испытания по показателям 2,в; 2,г и 6 табл. 3 изготовитель проводит на каждой 25-й партии, испытания по показателям 4, 5 и 7 табл. 3 — на каждой 5-й партии, а испытания по показателю 8 табл. 3 — на каждой 10-й партии.

(Измененная редакция, Изм. № 5).

2.4. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей по нему должны проводиться повторные испытания проб, отобранных от удвоенного количества мест той же партии.

Результаты повторных испытаний распространяются на всю партию.

3. МЕТОДЫ ИСПЫТАНИЙ

- 3.1. Пробы катионита отбирают шупом длиной около 1000 мм, диаметром 20—25 мм, изготовленным из нержавеющей стали. Щуп погружают до дна мешка или бидона по вертикальной оси. Допускается отбор проб катионита из мешков с помощью вакуумного пробоотборника (см. чертеж приложения). Отобранные в соответствии с п. 2.2 пробы соединяют вместе, тщательно перемешивают и отбирают среднюю пробу массой не менее 0,5 кг. Среднюю пробу помещают в чистую, сухую, плотно закрывающуюся банку или в полиэтиленовый мешок, который заваривают. На банку или мешок наклеивают этикетку с наименованием и маркой продукта, номером партии и датой отбора пробы. Перед каждым испытанием среднюю пробу тщательно перемешивают.
- 3.2. Внешний вид катионита определяют визуально без применения увеличительных приборов. Посторонние примеси не допускаются.

В случае присутствия в катионитах КУ-2—8 и КУ-2—8чС темных зерен для установления их цветности допускается использование микроскопа или аппарат «Микрофот» с увеличением в 10—20 раз.

Примечание. В катионитах марок КУ-2—8, КУ-2—8чС и КУ-2—20 допускается наличие единичных белых зерен макропористой структуры, а в катионите КУ-2—8 первого сорта— не более 1 % черных зерен.

- 3.1, 3.2. (Измененная редакция, Изм. № 5).
- 3.3. Гранулометрический состав определяют по ГОСТ 10900 мокрым рассевом.

(Измененная редакция, Изм. № 3, 4).

3.4. Удельный объем определяют по ГОСТ 10898.4, при этом в случае определения сорбционной емкости по стрептомицину карбоксильные катиониты (КБ) в Nа-форме после определения удельного объема отмывают дистиллированной водой до рН 7,0—7,2, а затем подсушивают на воздухе в течение 6 ч.

Катионит марки КУ-2—8чС подготовке к испытанию по ГОСТ 10896 не подвергается.

- 3.5. (Исключен, Изм. № 4).
- 3.6. Динамическую обменную емкость определяют по ГОСТ 20255.2 для катионитов марок KУ-1, KУ-2—8чС по раствору хлористого кальция концентрации c ($^{1}/_{2}$ CaCl $_{2}$) = 0,01 моль/дм 3 (0,01 н.) (метод с полной регенерацией); для катионитов марок KУ-2—8 и KУ-23 по раствору

хлористого кальция концентрации $c(^{1}/_{2} \text{ CaCl}_{2}) = 0,0035 \text{ моль/дм}^{3}(0,0035 \text{ н.})$ — (метод с заданным расходом регенерирующего вещества).

При этом катионит марки KУ-2—8чС предварительной подготовке по ГОСТ 10896 не подвергают. Для катионита марки KУ-1 взрыхление в колонке проводят водой перед каждой операцией насыщения.

(Измененная редакция, Изм. № 4).

3.7. Определение окисляемости фильтрата в пересчете на кислород

3.7.1. Применяемые реактивы, растворы и посуда:

калий марганцовокислый по ГОСТ 20490, х. ч., раствор концентрации c (1/5 KMnO₄) = 0.01 моль/дм³ (0.01 н.);

кислота серная по ГОСТ 4204, х. ч., разбавленная 1:3 дистиллированной водой; в приготовленный раствор добавляют по каплям раствор марганцовокислого калия до устойчивой розовой окраски;

кислота щавелевая по ГОСТ 22180, х. ч. или ч. д. а., раствор концентрации c ($^{1}/_{2}$ 1

натрий гидроокись по ГОСТ 4328, х. ч., раствор концентрации c (NaOH) = 0,1 моль/дм³ (0,1 н.); вода дистиллированная по ГОСТ 6709 или деминерализованная, отвечающая требованиям ГОСТ 6709:

вода дистиллированная подкисленная; готовят следующим образом: к 1 дм³ дистиллированной воды добавляют 100 см³ серной кислоты, разбавленной 1:3, смесь кипятят 10 мин, затем прибавляют раствор марганцовокислого калия до устойчивой слабо-розовой окраски;

бумага индикаторная «конго» красная»;

колба Кн-1—250 по ГОСТ 25336;

колба мерная исполнения 1-2 по ГОСТ 1770 вместимостью 1000 см³;

цилиндры по ГОСТ 1770 исполнения 1-2 вместимостью 10 и 500 см³ и исполнения 1-4 вместимостью 25, 100 см³;

бюретка исполнения 1, 2, 4, 5 по НТД класса точности 1—2 вместимостью 25 см³;

пипетка по НТД исполнения 1-5 класса точности 1-2 вместимостью 1 см³ и пипетки исполнения 2 класса точности 1-2 вместимостью 10 и 25 см³.

Допускается применение импортной лабораторной посуды и аппаратуры по классу точности и реактивов по качеству не ниже указанных в настоящем стандарте.

(Измененная редакция, Изм. № 5).

3.7.2. Проведение испытания

25 см³ фильтрата, полученного при определении полной статической обменной емкости, помещают в коническую колбу вместимостью 250 см³ и добавляют 75 см³ подкисленной дистиллированной воды. Содержимое колбы нейтрализуют раствором серной кислоты до перехода в синий цвет индикаторной бумаги конго красная. Затем прибавляют еще 5 см³ раствора серной кислоты и 10 см³ раствора марганцовокислого калия.

Колбу помещают на электроплитку с асбестовой сеткой и раствор кипятят в течение 10 мин. После этого в колбу прибавляют 10 см 3 раствора щавелевой кислоты и обесцветившийся раствор титруют раствором марганцовокислого калия до устойчивой слаборозовой окраски.

Если раствор при кипячении обесцветится, определение повторяют, взяв большее количество раствора марганцовокислого калия ($15\,$ или $20\,$ см 3) и такое же количество раствора щавелевой кислоты.

В тех же условиях проводят контрольный опыт с 25 см^3 раствора гидроокиси натрия и теми же количествами реактивов.

(Измененная редакция, Изм. № 4).

3.7.3. Обработка результатов

Окисляемость фильтрата в пересчете на кислород (Х) в мг/г вычисляют по формуле

$$X = \frac{K(V - V_1) \ 0.08 \cdot 100}{m_{\kappa} (100 - W)},$$

где K — коэффициент пересчета на общий объем фильтрата (для слабокислотного катионита равен 8, для сильнокислотного — 4);

V — объем раствора марганцовокислого калия концентрации точно c (1/5 KMnO₄) = 0,01 моль/дм³ (0,01 н.), израсходованный на титрование испытуемой пробы, см³;

- V_1 объем раствора марганцовокислого калия концентрации точно c (1/5 KMnO₄) = 0.01 моль/дм³ (0.01 н.), израсходованный на титрование контрольной пробы, см³;
- 0,08 количество кислорода, соответствующее 1 см³ точно моль/дм³ (0,01 н.) раствора марганцовокислого калия, мг;
 - $m_{\rm k}$ масса катионита, израсходованная для определения полной статической обменной емкости по ГОСТ 20255.1, г;
 - W массовая доля влаги в катионите, определенная по ГОСТ 10898.1, %.

За результат испытания принимают среднее арифметическое результатов двух определений, допускаемое расхождение между которыми не должно превышать $\pm 11~\%$ от среднего значения, при доверительной вероятности 0.95.

(Измененная редакция, Изм. № 4, 5).

3.8. Определение величины рН фильтрата

3.8.1. Применяемые приборы и растворы

рН-метр любого типа;

колонка стеклянная для испытаний по методу с полной регенерацией ионита (метод I) по ГОСТ 20255.2;

стакан стеклянный по ГОСТ 25336 любого исполнения вместимостью 250 см3;

цилиндр исполнения 1—4 по ГОСТ 1770 вместимостью 250 см³;

вода дистиллированная по ГОСТ 6709 или деминерализованная, отвечающая требованиям ГОСТ 6709, рН 5,8—6,6.

(Измененная редакция, Изм. № 1, 5).

3.8.2. Проведение испытания

Около 20 г катионита в пересчете на сухой продукт взвешивают с погрешностью до 0,1 г, помещают в стакан вместимостью 250 см^3 , заливают 120 см^3 дистиллированной воды и оставляют на 1 ч для набухания.

Набухший катионит с водой, которой он был залит, переносят в колонку. Воду из колонки сливают, оставляя над уровнем катионита слой толщиной 1-2 см, и через катионит пропускают 200 см^3 дистиллированной воды со скоростью $2 \text{ дм}^3/\text{ч}$. Первые 150 см^3 фильтрата отбрасывают. Для определения pH берут последующие 50 см^3 фильтрата. pH фильтрата определяют на pH-метре, применяя стеклянный электрод.

3.8.3. За результат испытания принимают среднее арифметическое двух определений, допускаемое расхождение между которыми не должно превышать ±2,5 % от среднего значения, при доверительной вероятности 0,95.

(Введен дополнительно, Изм. № 4).

3.9. Определение сорбщионной емкости по стрептомицину

3.9.1. Применяемые приборы, посуда, реактивы и растворы:

фотоколориметр типа ФЭК-М;

лабораторный автотрансформатор типа ЛАТР-2М или РНО 250-2М;

электропривод для швейных машин;

секундомер, тип С1-А;

мешалка стеклянная пропеллерного типа;

сита с сетками № 0315 и 1,25 мм по ГОСТ 6613;

колбы мерные исполнения 1—2 по ГОСТ 1770, класса точности 1—2, вместимостью 50, 100, 200, 250 и 500 $\,\mathrm{cm}^3$;

цилиндр исполнения 1—4 по ГОСТ 1770 вместимостью 250 см³;

бюретка типа 1-2 исполнения 1-5 по НТД, класса точности 1-2, вместимостью 25 или 50 см³, с ценой деления не более 0.1 см³:

пипетка исполнения 4-5 по НТД, класса точности 1-2, вместимостью 1 см³ и исполнения 6-7 класса точности 1-2, вместимостью 5 см³;

воронка Бюхнера по ГОСТ 9147;

колба для фильтрования под вакуумом по ГОСТ 25336;

воронка типа ВФ исполнения 1 по ГОСТ 25336 с фильтром класса ПОР 250;

пробирки стеклянные по ГОСТ 25336 тип ПБ-19;

стрептомицин с биологической активностью не менее 730 мкг/мг в пересчете на сухое вещество, с содержанием зольных примесей не более 0.5%;

глицерин по ГОСТ 6259;

натрия гидроокись по ГОСТ 4328, х. ч., растворы концентрации c (NaOH) = 0,2 моль/дм³ (0,2 н.) и c (NaOH) = 1 моль/дм³ (1 н.);

кислота серная по ГОСТ 4204, раствор концентрации c ($^{1}/_{2}$ H₂SO₄) = 0,55 моль/дм³ (0,55 н.); квасцы железоаммонийные, 1 %-ный раствор в растворе серной кислоты концентрации c ($^{1}/_{2}$ H₂SO₄) = 0,55 моль/дм³ (0,55 н.);

фенолфталеин (индикатор), 0.1 %-ный спиртовой раствор готовят по ГОСТ 4919.1:

вода дистиллированная по ГОСТ 6709 или деминерализованная, отвечающая требованиям ГОСТ 6709.

Допускается применение импортной лабораторной посуды и аппаратуры по классу точности и реактивов по качеству не ниже указанных в настоящем стандарте.

(Измененная редакция, Изм. № 1, 2, 4, 5).

3.9.2. Подготовка к испытанию

3.9.2.1. Подготовку к испытанию проводят по ГОСТ 0896.

При этом для катионита марки $\overline{\text{Ky}}$ -2—20 навеску берут массой 50 г для карбоксильных катионитов — 10 г, после определения удельного объема по п. 3.4.

(Измененная редакция, Изм. № 4).

3.9.2.2. Приготовление исходного раствора стрептомицина

Навеску стрептомицина (т) в граммах вычисляют по формуле

$$m = \frac{C_0 \cdot 215}{C \cdot 1000}$$
,

где C_0 — ожидаемая концентрация стрептомицина в исходном растворе, мкг/мл (принимают условно 2,5· 10^3 мкг/см 3 для катионита марки KУ-2—20 и $15\cdot10^3$ мкг/мл для карбоксильных катионитов):

C — содержание стрептомицина в препарате, мкг/мг;

215 — объем дистиллированной воды для растворения навески стрептомицина, см³.

Мерным цилиндром вместимостью 250 см³ отмеряют 215 см³ дистиллированной воды и растворяют в ней полученную навеску.

3.9.2.3. Построение калибровочного графика

Навеску стрептомицина (m) в граммах, необходимую для приготовления эталонного раствора, вычисляют по формуле

$$m = \frac{C' \cdot 200}{C \cdot 1000} ,$$

где C' — концентрация эталонного раствора стрептомицина, равная 1000 мкг/см³;

C — содержание стрептомицина в препарате, мкг/мг;

200 — объем эталонного раствора, см³.

Навеску стрептомицина взвешивают с погрешностью не более 0,0002 г и растворяют в дистиллированной воде в мерной колбе вместимостью 200 см³.

В мерные колбы вместимостью 100 см^3 вносят по 5, 10, 15, 20 и 25 см^3 эталонного раствора, доводят объем его дистиллированной водой до метки, отбирают из каждой колбы по 10 см^3 раствора стрептомицина в пробирки и добавляют туда 2 см^3 раствора гидроокиси натрия концентрации $c \text{ (NaOH)} = 0,2 \text{ моль/дм}^3 \text{ (0,2 н.)}$. Затем пробирку помещают в кипящую водяную баню и через 4 мин охлаждают водопроводной водой в течение 3 мин. После этого добавляют в пробирку 8 см^3 раствора железоаммонийных квасцов и сразу замеряют оптическую плотность на фотоколориметре.

Подготовка прибора к испытанию

Испытание проводят в соответствии с инструкцией, прилагаемой к прибору. При этом цвет светофильтра должен быть зеленым, а рабочая длина кювета — 30 мм. В качестве раствора сравнения используют дистиллированную воду.

Оптическая плотность анализируемого раствора должна быть $0.1 \div 0.5$. Если оптическая плотность выше указанного предела, раствор разбавляют. Затем строят калибровочную кривую, для чего на оси абсцисс откладывают концентрацию стрептомицина в растворах, взятых для анализа в мкг/см³, а на оси ординат — их оптическую плотность.

(Измененная редакция, Изм. № 4, 5).

3.9.3. Проведение испытания

В пробе катионита, подготовленной к испытанию, определяют массовую долю влаги по ΓΟCT 10898.1.

Около 6 г катионита марки КУ-2—20 (карбоксильного — 1 г) в пересчете на сухую массу, взвешивают с погрешностью не более 0,0002 г и помещают в коническую колбу вместимостью 250 см³. Затем наливают точно 200 см³ исходного раствора стрептомицина, приготовленного по п. 3.9.2.2 и нагретого до 25 °C. Колбу закрывают притертой пробкой с глицериновым затвором, в который вставлена мешалка пропеллерного типа и помещают ее в водяной термостат, нагретый до (25±1) °С. Мешалка приводится в движение лабораторным электромотором, включенным в сеть через прибор ЛАТР. Скорость вращения мешалки должна быть такова, чтобы зерна катионита находились во взвещенном состоянии.

Содержимое колбы перемешивают 3 ч (для карбоксильных катионитов — 16 ч), затем катионит отделяют на фильтре Шотта и промывают дистиллированной водой. Фильтрат и промывные воды собирают в мерную колбу вместимостью 500 см3 (для карбоксильных катионитов вместимостью 200 см³), добавляют 1—2 капли раствора фенолфталеина и приливают по каплям раствор гидроокиси натрия концентрации c (NaOH) = 1 моль/дм 3 (1 н.) до появления слабо-розовой окраски. Затем колбу с фильтратом доводят дистиллированной водой до метки при 25 °C.

Для определения концентрации стрептомицина в исходном растворе (C_0) и фильтрате (C_1) проводят их разбавление. Для этого 4 см 3 исходного раствора для катионита марки KY-2-20 (1 см 3 для карбоксильного катионита) помещают в мерную колбу вместимостью 50 см³ (100 см³ для карбоксильного катионита) и доводят объем до метки дистиллированной водой, 10 см³ фильтрата (2 см³ карбоксильного катионита), отмеренного пипеткой, вносят в мерную колбу вместимостью 50 см³ (100 см³ для карбоксильного катионита) и доводят объем до метки дистиллированной водой.

Затем 10 см³ раствора стрептомицина помещают в пробирки и определяют концентрацию стрептомицина по п. 3.9.2.3. По калибровочному графику находят концентрацию стрептомицина в разбавленном растворе, взятом для определения.

(Измененная редакция, Изм. № 4, 5).

3.9.4. Обработка результатов

3.9.4.1. Концентрацию стрептомицина в исходном растворе (C_0) и в фильтрате (C_1) в мкг/см³ вычисляют по формулам

$$C_0 = \frac{C_2 \cdot 50(100)}{4(1)}$$
; $C_1 = \frac{C_3 \cdot 50(100)}{10(2)}$,

- где C_2 концентрация стрептомицина в разбавленном исходном растворе, найденная по калибровочному графику, мкг/см³;
 - C_3 концентрация стрептомицина в разбавленном фильтрате, найденная по калибровочному графику, мкг/см3;
 - 4 (1 для карбоксильного катионита) объем исходного раствора стрептомицина, взятый для разбавления, cm^3 ;
 - 10 (2 для карбоксильного катионита) объем фильтрата стрептомицина, взятый для разбавления, см³;
- 50 (100 для карбоксильного катионита) общий объем разбавленного исходного раствора стрептомицина или фильтрата, см³.
 - 3.9.4.2. Сорбционную емкость по стрептомицину (СЕ) в мкг/г вычисляют по формуле

$$CE = \frac{[200 \cdot C_0 - 500(200) \cdot C_1]100}{m_{\kappa}(100 - W)},$$

где C_0 — концентрация стрептомицина в исходном растворе, мкг/см³;

 C_1 — концентрация стрептомицина в фильтрате, мкг/см³;

 $m_{\rm k}$ — масса катионита, г; W — массовая доля влаги в катионите, определяемая по ГОСТ 10898.1, %.

За результат испытания принимают среднее арифметическое двух определений, допускаемое расхождение между которыми не должно превышать ±5 % от среднего значения при доверительной вероятности 0,95.

(Измененная редакция, Изм. № 4).

3.10. (Исключен, Изм. № 4).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Катиониты упаковывают в полиэтиленовые мешки по ГОСТ 17811, вложенные в льноджуто-кенафные мешки по ГОСТ 30090 или в мешки из винилискожи. Горловину мешка заваривают, наружный мешок зашивают машинным способом или завязывают. Масса катионита в мешке не должна превышать 50 кг. Допускается упаковывание катионита: в полиэтиленовые бочки, бидоны, фляги, обеспечивающие сохранность продукции, которые ломбируют. По требованию потребителя продукция в полиэтиленовой таре может быть дополнительно упакована в деревянные обрешетки; в резинокордные контейнеры объемом до 2 м³ с полиэтиленовыми вкладышами;

в мешки из прорезиненной ткани;

для сухих катионитов (с массовой долей влаги не более 10 %) и для катионита марки КУ-1 в трех-четырехслойные бумажные мешки по ГОСТ 2226, марки НМ с мешками-вкладышами из полиэтиленовой или полихлорвиниловой пленки по нормативно-технической документации;

в контейнеры разового использования по нормативно-технической документации.

(Измененная редакция, Изм. № 4, 5).

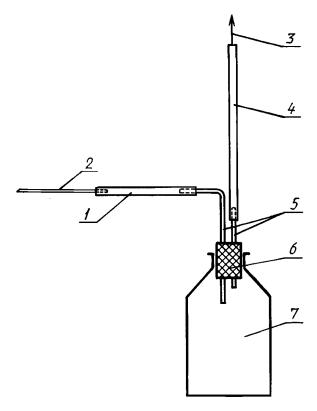
- 4.2. Транспортную тару маркируют по ГОСТ 14192 с указанием следующих дополнительных данных:
 - а) наименования или товарного знака предприятия-изготовителя;
 - б) наименования и марки катионита;
 - в) номера партии;
 - г) даты изготовления;
 - д) массы нетто:
 - е) обозначения настоящего стандарта;
 - ж) (Исключен, Изм. № 4).

(Измененная редакция, Изм. № 4).

- 4.3. (Исключен, Изм. № 4).
- 4.4. Катиониты транспортируют в крытых транспортных средствах. При температуре ниже 0 °C катиониты всех марок, кроме марки КУ-1, перевозят в отапливаемом транспорте в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

По согласованию с потребителем допускается перевозка катионитов любым видом транспорта без отопления.

При температуре выше 0 °C допускается транспортировать катиониты, упакованные в контейнеры, на открытом подвижном составе.


(Измененная редакция, Изм. № 4).

- 4.5. Не допускается транспортировать катиониты, упакованные в мешки вместе с анионитами и с агрессивными веществами.
- 4.6. Катиониты хранят в упакованном виде в чистых и сухих складских помещениях при температуре не ниже плюс 2 °С на расстоянии не менее 1 м от отопительных приборов.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 5.1. Готовая продукция должна быть принята техническим контролем предприятия-изготовителя. Изготовитель должен гарантировать соответствие всего выпускаемого продукта требованиям настоящего стандарта при соблюдении правил хранения.
 - 5.2. Гарантийный срок хранения катионитов 12 мес со дня изготовления.
 - 5.1, 5.2. (Измененная редакция, Изм. № 4).

ВАКУУМНЫЙ ПРОБООТБОРНИК

1 — трубка ПЭНД $d_{\rm y}$ — 6 мм, l ≈ 600—700 мм; 2 — острый наконечник для отбора пробы из мешка (титан или нержавеющая сталь $d_{\rm y}$ — 5 мм, l ≈ 150 мм); 3 — к вакуум-насосу; 4 — трубка ПЭНД $d_{\rm y}$ — 6 мм; 5 — трубка из титана или нержавеющей стали $d_{\rm y}$ — 6 мм; 6 — пробка резиновая; 7 — бутыль или колба из толстостенного стекла вместимостью 1—2 дм 3

(Введено дополнительно, Изм. № 5).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного Комитета стандартов Совета Министров СССР от 21.11.74 № 2585
- 3. B3AMEH FOCT 13505-68, FOCT 5.1428-72
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на которую дана ссылка	Номер пункта, подпункта
ΓΟCT 1770—74	3.7.1, 3.8.1, 3.9.1
ΓOCT 2226—88	4.1
Γ O CT 4204—77	3.7.1, 3.9.1
Γ O CT 4328—77	3.7.1, 3.9.1
ΓOCT 4919.1—77	3.9.1
ГОСТ 6259—75	3.9.1
ГОСТ 6613—86	3.9.1
ΓΟCT 6709—72	3.7.1, 3.8.1, 3.9.1
ΓOCT 9147—80	3.9.1
ГОСТ 10896—78	3.4, 3.6, 3.9.2.1
ΓOCT 10898.1—84	1.2, 3.7.3, 3.9.3, 3.9.4.2
ГОСТ 10898.4—84	1.2, 3.4
ГОСТ 10898.5—84	1.2
ГОСТ 10900—84	1.2, 3.3
ГОСТ 12868—77	1.2
ГОСТ 14192—96	4.2
ГОСТ 15615—79	1.2
ΓOCT 17338—88	1.2
ΓOCT 17811—78	4.1
ΓOCT 20255.1—89	1.2, 3.7.3
ГОСТ 202 55. 2—89	1.2, 3.6, 3.8.1
ΓOCT 20490—75	3.7.1
ГОСТ 22180—76	3.7.1
ГОСТ 25336—82	3.7.1, 3.8.1, 3.9.1
ГОСТ 25794.2—83	3.7.1
ГОСТ 30090—93	4.1

- 5. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 6. ИЗДАНИЕ (июль 2005 г.) с Изменениями № 1, 2, 3, 4, 5, утвержденными в апреле 1976 г., апреле 1979 г., декабре 1979 г., декабре 1985 г., сентябре 1989 г. (ИУС 6—76, 5—79, 1—80, 2—86, 12—89)

Редактор *М.И. Максимова* Технический редактор *Л.А. Гусева* Корректор *В.И. Варенцова* Компьютерная верстка *И.А. Налейкиной*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 25.02.2003. Подписано в печать 14.03.2003. Усл. печ.л. 1,86. Уч.-изд.л. 1,45. Тираж 100 экз. С 9973. Зак. 224.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. «Московский печатник», 105062 Москва, Лялин пер., 6. Плр № 080102