

ГОСУДАРСТВЕННЫ Й СТАНДАРТ СОЮЗА ССР

СТАЛИ И СПЛАВЫ методы определения газов ГОСТ 17745—90

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛИ И СПЛАВЫ

Методы определения газов

ΓΟCT 17745—90

Steels and alloys.

Methods for determination of gases

OKCTY 0809

Срок действия

c 01.07.91

до 01.07.96

Настоящий стандарт устанавливает метод восстановительного плавления в вакууме или в потоке инертного газа-носителя для определения кислорода (при массовой доле от 0,0005 до 0,2%), азота (при массовой доле от 0,0005 до 0,8%) и водорода (при массовой доле от 0,00005 до 0,01%) и метод нагрева или плавления в вакууме или в потоке инертного газа-носителя для определения водорода (при массовой доле от 0,00005 до 0,01%) в сталях и сплавах на основе железа, никеля, кобальта, железо-никеля.

Метод восстановительного плавления для определения массовых долей кислорода, азота и водорода основан на плавлении образца в графитовом тигле в вакууме или в потоке инертного газа-носителя, экстрагировании содержащихся в нем газов и последующем анализе кислорода, водорода и азота в экстрагированной газовой смеси физическими или физико-химическими методами.

Метод нагрева или плавления для определения массовой доли водорода основан на нагреве или плавлении образца в контеймере из керамического материала в вакууме или в потоже инертного газа-носителя, экстрагировании водорода из образца и определении его количества физическими или физико-химическими методами.

Метод восстановительного плавления применяется при разногласии в оценке качества сталей и сплавов.

Допускается по согласованию сторон применять методы для чугунов, ферросплавов и сплавов на основе марганца.

Издание официальное

Перепечатка воспрещена

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 28437.
- 1.2. Отбор проб для изготовления образцов для анализа по ГОСТ 7565.

Допускается отбор проб с помощью кварцевой трубки, размеры которой обеспечивают получение плотной пробы без пор и усадочных дефектов, а также специальных пробоотборников. Охлаждение проб осуществляют на воздухе или в воде.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

2.1. Для определения кислорода применяется экспресс-анализатор типа АК 7516 с техническими характеристиками:

время анализа — 82 с;

максимальная мощность — 11 кВА;

расход аргона 0,5 дм3/мин;

чувствительный элемент — ячейка кулонометрического титрования.

2.2. Для определения азота применяется экспресс-анализатор типа АМ 7514 с техническими характеристиками:

время анализа — не более 120 с;

максимальная мощность — 11 кВА;

расход гелия — 1,02 дм3/мин;

чувствительный элемент — детектор по теплопроводности.

2.3. Для определения водорода применяется прибор типа RH-2 фирмы «Леко» с техническими характеристиками:

расход газа — 0,26—0,30 дм³/мин;

время анализа — не более 420 с;

максимальная мощность — 4,5 кВА;

чувствительный элемент — детектор по теплопроводности.

2.4. Блок-схемы проборов для измерения массовой доли газов в общем виде приведены на чертеже.

Допускается применение других средств измерений с метрологическими характеристиками не хуже, чем у вышеуказанных приборов.

Перечень приборов приведен в приложении.

2.5. Весы для взвешивания образцов — любые, обеспечивающие требуемую точность взвешивания, в том числе и автоматические, которыми оборудованы приборы для газового анализа. Образцы для анализа взвешивают с пределом допускаемой погрешности, не превышающий 0,001 г при массе образцов до 0,1 г и 0,002 г — при массе образцов свыше 0,1 г.

2.6. Материалы

Гелий газообразный чистотой не менее 99,99%.

Аргон газообразный по ГОСТ 10157.

Азот газообразный по ГОСТ 9293.

C. 3 FOCT 17745-90

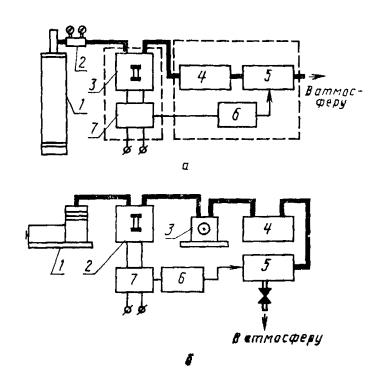
Водород газообразный по ГОСТ 3022.

Окись углерода газообразная чистотой не менее 99,5%.

Углерод четыреххлористый по ГОСТ 20288.

Спирт этиловый ректификованный технический по ГОСТ 18300. Эфир серный.

Бензин авиационный по ГОСТ 1012.


Ангидрон.

Аскарит.

Меди (II) окись по ГОСТ 16539.

Фосфорный ангидрид.

Никель Н1, Н2 по ГОСТ 849.

Блок-схемы приборов для измерения массовой доли газов:

а—методом плавления (нагрева) в потоке инертного газа-носителя (1—источник инертного газа-носителя; 2—редуктор; 3—экстракционная печь; 4—реакционный блок; 5—аналитический блок; 6—блок управления; 7—блок электропитания печи) 6—методом плавления (нагрева) в вакууме (1—форвакуумный насос; 2—экстракционная печь; 3—газосборочный насос; 4—реакционный блок; 5—аналитический блок; 6—блок управления; 7—блок электропитания печи)

Олово 01, 02 по ГОСТ 860. Бязь хлопчатобумажная по ГОСТ 11680. Тигли графитовые. Допускается использование других материалов, в том числе поставляемых фирмами-производителями приборов по качеству не ниже указанных в стандарте.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Подготовка образцов

3.1.1. Для анализа применяют компактные образцы с чистой без цветов побежалости поверхностью, без пор, раковин и заусенцев, обработанные на металлорежущих станках, напильником (надфилем) или абразивом, не содержащим соединений анализируемого (анализируемых) газов.

При определении массовой доли азота допускается использо-

вание образцов в виде крупной стружки.

При изготовлении образцов не допускается нагрев металла свыше 70°C.

Масса образцов должна составлять 0,05—2,0 г для определения массовой доли кислорода и аэота и 0,05—12,0 г — для определения массовой доли водорода.

3.1.2. Для проведения анализа изготовляют не менее трех ком-

пактных образцов.

3.1.3. Перед проведением анализа образцы обезжиривают промывкой в спирте (эфире, авиационном бензине или четыреххлористом углероде). При определении массовой доли кислорода и азота допускается очистка образцов перед анализом физическими или физико-химическими методами, в том числе электрохимическим полированием и травлением в кислотах с применением ультразвука.

Если используются образцы в виде стружки, то допускается про-

ведение анализа без их промывки.

3.2. Подготовка приборов к анализу

3.2.1. Подготовка приборов к анализу включает прогрев прибора, градуировку прибора по стандартным образцам или градуировочным газам, определение поправки контрольного опыта.

3.2.2. При определении поправки контрольного опыта выполняют те же операции, что и при анализе образцов (см. п. 4.1), за исключением операции загрузки образцов в керамический кон-

тейнер или графитовый тигель.

Определение поправки контрольного опыта проводят не реже одного раза в смену (предпочтительно через 10—15 анализов). Если в процессе анализа используются различные партии керамических контейнеров или графитовых тиглей, то определение поправки контрольного опыта проводят перед началом использования каждой такой партии.

4. ПРОВЕДЕНИЕ АНАЛИЗА

- 4.1. Анализ образцов включает обязательные операции: установку тигля или керамического контейнера в печь, дегазацию тигля нагрев тигля до заданной температуры и выдержку при этой температуре в течение времени, обеспечивающего полноту экстракции анализируемого газа (газов).
- 4.2. Рекомендуемые составы холостых ванн и температуры проведения анализов для различных классов сталей и сплавов при определении массовых долей газов приведены в табл. 1.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ АНАЛИЗА

5.1. Массовую долю газа (C) в процентах вычисляют по формуле

$$C = \frac{m_{\rm r} - m_{\rm K}}{10 \cdot m},$$

где m_r — масса газа, определенная прибором, мкг;

 $m_{\rm K}$ — поправка контрольного опыта, мкг;

m — масса образца, г.

Допускается расчет результатов измерения массовой доли газа проводить по формулам, приведенным в НТД на приборы.

5.2. Нормы точности и нормативы контроля точности измерения массовых долей газов и кислорода приведены в табл. 2 и 3.

5.3. Если расхождение результатов двух параллельных измерений превышает значения d_2 , то выполняют третье измерение. Если расхождение крайних результатов трех измерений не превышает допускаемое значение d_3 , приведенное в табл. 2 и 3, то результат анализа вычисляют как среднее арифметическое значение результатов трех параллельных измерений.

5.4. Если расхождение крайних результатов трех измерений превышает допускаемое значение d_3 , а расхождение двух близких результатов измерений не превышает d_2 , то вычисляют среднее арифметическое значение двух результатов измерений \overline{C} . Для \overline{C} находят величину $3\sigma_{\mathbf{k}}$ (табл. 2 и 3) и оценивают, попадает ли результато оставшегося измерения в интервал $\overline{C}\pm 3\sigma_{\mathbf{k}}$, если не попадает, то признается промахом и за результат анализа принимается величина \overline{C} . Если попадает, то результат анализа признают неверным. Измерение или повторяют или прекращают до выяснения и устранения причин, вызвавших повышенное рассеивание результатов измерений.

По согласованию сторон при отсутствии дополнительных образцов для повторения анализа допускается результат анализа выдавать в виде результатов трех определений.

Класс стали (сплава)	Определяемый газ	Рекомендуемые состав холостой ванны и отношение массы образца к массе холостой ванны	Рекомендуемая температура проведения анализа, °С
Стали низкоуглеродистые (кипящие и полуспокойные)	Кислород Азот Водород	Не требуется	Не менее 180 Не менее 180 Не менее 160
Стали низко-, средне-, и высокоуглеродистые (спо- койные, низколегированные; сплавы на железной, же- лезо-никелевой, никелевой и кобальтовой основе, не со- держащие Al, Ti, Zr, Cr, Nb и др. элементов, образую- щих прочные оксиды и нитриды или возгоны, обла- дающие высокой сорбционной активностью по отно- шению к определяемым газам	Кислород Азот Водород	Не требуется	Не менее 1856 Не менее 1856 Не менее 1606
Стали среднелегированные, высоколегированные; сплавы на железной, железо-никелевой, марганцевой и кобальтовой основах, содержащие A! Ti, Zr, Cr, Nb	Кислород	Никель+ (4—10%) олова; не более 1:1 (для спла- вов— не менее 1:5)	Не менее 190
и др. элементы, образующие прочные оксиды и нитриды и возгоны, обладающие высокой сорбционной активностью по отношению к определяемым газам	Азот Водород	Никель; не более 1:1 (для сплавов — не менее 1:5)* Олово; 1:3	He менее 1900 Не менее 1850
Стали высоколегированные, содержащие Мо, W и др. тугоплавкие элементы	Кислород Азот Водор о д	Никель+ (4—10%) олова; не менее 1:2** Никель; не менее 1:2 Олово; 1:3	Не менее 2000 Не менее 2000 Не менее 1900

^{*} Допускается применение и других составов холостых ванн, обеспечивающих полноту экстракции анализируемого газа. При анализе материалов, не указанных в таблице, температуру и другие условия анализа выбирают оптимальными для этих материалов.

^{**} Допускается присадкя в тигель мелкодисперсного графита в количестве, не превышающем маесы анализируемого образца.

Массовая доля газов, %	Погрешно зультатов за, А	анали-	Допуска расхожу двух пару паред d_2 ,	цения аллель- анелений	Допуска расхож, трех п лельных лений	дения арал- опр ед е-	Допуска расхожу двух ре татов ан $d_{ m K}$,	кинец Зуль- Всика	хождени татов стандар разца от	емые рас- я резуль- анализа тного об- аттестован- сения σ, %	Утрое: среднее ратиче отклов 3 ° к°	квад- ское епие
	кислород	азот	кислород	дзот	кислород	азот	кислород	азот	кислород	азот	кислород	азот
0,0005—0,001 0,001—0,002 0,002—0,005 0,005—0,01 0,01—0,02 0,02—0,05 0,05—0,1 0.1—0,2 0.20—0,5 0,5—0,8	0,0008 0,0009 0,0010 0,0018 0,004 0,007 0,009 0,03	0,0008 0.0009 0 0016 0,0024 0,004 0 006 0.008 0,02 0,05 0,08	0,0009 0,0011 0,0018 0,004 0,007 0,010 0,03	0,0008 0,0009 0,0017 0,0025 0,004 0,006 0,008 0,02 0,05 0,08	0,0012 0,0013 0,0023 0,005 0,008 0,012 0,04	0,0010 0,0012 0,0020 0,0030 0,005 0,007 0,010 0,03 0,06 0,10	0,0012 0,0013 0,0023 0,005 0,008 0,012 0,04	0,0010 0.0012 0,0020 0,0030 0,005 0,007 0.010 0,03 0,06 0,010	0,0005 0,0006 0,0007 0,0012 0,002 0,004 0,006 0,02	0,0005 0,0006 0,0010 0,0026 0,002 0,004 0,005 0,02 0,03 0,05	0,0012 0,0014 0,0025 0,005 0,010 0,013 0.04	0.0011 0.0012 0.0022 0.0030 0.005 0.008 0.011 0.03 0.07

Массовая доля водорода, %	Погрешность результатов анализа Δ, %	Допускаемые расхождения двух парал- лельных опре- делений d_2 , %	Допускаемые расхождения трех параллельных определений d_3 , %	Допускаемые расхождения двух результатов анализа d _к , %	Допускаемые рас- хождения резуль- татов анализа стандартного об- разца от аттесто- ванного значения, σ, %	Утроенное среднее квадратическое отклонение 3 ск. %
0,00005—0,0001	0,00008	0,00008	0,00010	0,00010	0,00005	0,00011
0 0001—0,0003	0,00009	0,00010	0,00012	0,00012	0,00006	0,00013
0 0003—0,0006	0,00014	0,00015	0,00018	0,00018	0,00009	0,00020
0,0006—0,001	0,00024	0,00025	0,0003	0,0003	0,00016	0,0003
0,001—0,002	0,0005	0,0005	0,0006	0,0006	0,0003	0,0007
0,002—0,004	0,0007	0,0007	0,0008	0,0008	0,0004	0,0009
0,004—0,010	0,0010	0,0010	0,0013	0,0012	0,0006	0,0014

6. КОНТРОЛЬ ТОЧНОСТИ ИЗМЕРЕНИЙ

6.1. Контроль стабильности градуировочной

характеристики

6.1.1. Контроль стабильности градуировочной характеристики для верхнего и нижнего пределов диапазона измерений осущестыляют не реже одного раза в смену с помощью стандартных образцов или градуировочных газов.

Допускается выполнять контроль стабильности градуировочной характеристики только для верхней границы или середины диапазона измерений.

6.1.2. Если расхождение значений двух параллельных измерений массовой доли газа в стандартных образцах не превышает d_2 , то вычисляют среднее арифметическое значение \overline{C} результатов измерений и разность $\Delta C = |C_{c\tau} - \overline{C}|$, где $C_{c\tau}$ — аттестованное значение массовой доли газа в стандартном образце.

Если расхождение параллельных измерений превышает d_2 , то

измерение повторяют в соответствии с п. 5.3.

Стабильность градуировочной характеристики считается удовлетворительной, если ΔC не превышает допускаемого значения $0.6~d_u$ (см. табл. 2 и 3).

Если ΔC превышает 0,6 d_{κ} , то проводят градуировку прибора

в соответствии с инструкцией по эксплуатации.

6.2. Контроль правильности результатов анализа

6.2.1. Не реже одного раза в смену перед проведением анализов осуществляют контроль правильности результатов путем анализа стандартного образца с аттестованной массовой долей газа, ближайшей к интервалу массовых долей газа в анализируемой серии образцов и сходной с ними по типу материала.

Допускается совмещать контроль правильности измерений с

контролем стабильности градуировочной характеристики.

6.2.2. Если расхождение значений двух параллельных определений массовой доли газа в стандартных образцах не превышает d_2 , вычисляют среднее арифметическое значение \overline{C} и разность $\Delta C = -|C_{cor} - \overline{C}|$.

Если расхождение параллельных определений превышает d_2 , то

определение повторяют в соответствии с п. 5.3.

Правильность измерений считается удовлетворительной, если

 ΔC не превышает δ (см. табл. 2 и 3).

Есян ΔC превышает δ , то проводят градуировку прибора согласно инструкции по эксплуатации и измерение повторяют. Если в этом случае ΔC превышает δ , то измерение прекращают до выяснения причин, вызывающих повышенное отклонение.

ПРИЛОЖЕНИ**Е** Справочно**е**

Перечень приборов для измерения массовой доли газов

Таблина 4

Наименевание прибора	Анализируемый саз	Предприятие (фирма) производитель
AK 7516 RO 16, 17, 116, 316, 416 EAO 220, 202 D-mat 353, OSA-mat 353	Кислород	НПО «Черметавтоматика» «Леко» США «Бельцерс» Лихтенштейн «Шторляйн» ФРГ
TC-136, 436, 30, 36 ON-mat 822, 812, 821, 850	Кислород, азот	«Леко» США «Штроляйн» ФРГ
AM-7514 TN-14, 15, TN-114 TN-314, TN-414 N-mat 453, NSA-mat 453 EAN 202, 220, 221	Азот	НПО «Черметавтоматика» «Леко» США «Штроляйн» ФРГ «Бальцерс» Лихтенштейн
RH-1, 2, 3, 402, 404 EAH 202, 220 H-mat 261, 2000, 2002, 2003	Водород	«Леко» США «Бальцерс» Лихтенштейн «Шгроляйн» ФРГ

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. П. Замараев, В. В. Покидышев, А. А. Иванов, В. М. Скосырев, В. Т. Абабков, А. А. Сахарнов, Л. Н. Дмитрова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.04.90 № 1048
- 3. B3AMEH FOCT 17745-72
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер нункта
FOCT 849—70	2.6
FOCT 860—75	2.6
FOCT 1012—72	2.6
FOCT 3022—80	2.6
FOCT 7555—81	1.2
FOCT 9293—74	2.6
FOCT 10157—79	2.6
FOCT 11680—76	2.6
FOCT 1639—79	2.6
FOCT 18300—87	2.6
FOCT 20288—74	2.6
FOCT 28437—90	2.6

Редактор И. В. Виноградская
Технический редактор В. Н. Прусакова
Корректор В. И. Кануркина

Сдано в наб. 22.05.90 Подп. в печ. 31.07.90 0,75 усл. неч. л. 0,75 усл. кр.-отт. 0,64 уч.-изд. л. Тир. 11000