ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СИЛУМИН В ЧУШКАХ

Методы определения меди

FOCT

Aluminium-silicon alloy ingots. Methods for determination of copper 1762.6-71

OKCTY 1709

Срок действия

с 01.01.73 до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрический метод (при массовой доле меди от 0,001 до 0,04%), полярографический и атомно-абсорбционный методы определения меди (при массовой доле меди от 0,005 до 0,1%).

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 1762.0—71.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода состоит в измерении оптической плотности окрашенного комплексного соединения меди с диэтилдити-офосфатом никеля, экстрагируемого четыреххлористым углеродом.

(Измененная редакция, Изм. № 2).

2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр ФЭК-56М, ФЭК-60, КФК, спектрофотометр СФ-16, СФ-26 или аналогичные.

Вода дистиллированная, не содержащая тяжелых металлов.

Дистиллированную воду очищают от следов тяжелых металлов пропусканием через слой сильно кислотного катионита (КУ-1, КУ-2).

Катионит КУ-1, КУ-2 по ГОСТ 20298-74.

Все реактивы готовят на очищенной таким способом воде.

Катионит: готовят следующим образом: 40-50 г катионита, отсеянного от пыли, помещают в стакан вместимостью 300 см3, приливают 80—100 см³ соляной кислоты, разбавленной 1:1, и нагревают в течение 30-45 мин. Кислоту сливают и многократно промывают катионит водой при перемешивании декантацией до нейтральной реакции по метиловому оранжевому. Катионит переносят в колонку с притертым краном, на дно которой уложен пыж из стеклянной ваты. Колонку с катионитом заполняют дистиллированной водой, слой катионита должен быть всегда покрыт водой. Поглотительные свойства катионита после его насыщения могут быть восстановлены обработкой соляной кислотой и водой.

Диэтилдитиофосфат никеля, 0,04%-ный водный раствор.

Натрия гидрат окиси по ГОСТ 4328—77, раствор с массовой долей 30%. Навеску гидроокиси натрия растворяют в воде в никелевой или платиновой чашке и, если нужно, фильтруют через гигроскопическую вату, собирая раствор в сосуд из полиэтилена. Натрий сернокислый по ГОСТ 4166—76.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1 и раствор с молярной концентрацией 0,2 моль/дм³.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929-76, раствор с массовой долей 3%.

Медь по ГОСТ 859-78.

Стандартные растворы меди

Раствор А, готовят следующим образом: 0,2000 г меди растворяют в 5 см3 азотной кислоты. После растворения добавляют 10 см3 соляной кислоты и выпаривают до небольшого объема. Выпаривание с соляной кислотой повторяют еще два раза. К остатку добавляют 15 см³ соляной кислоты, переводят раствор в мерную колбу вместимостью 1 дм³ и разбавляют до метки водой.

1 см³ раствора А содержит 0,2 мг меди.

Раствор Б, готовят перед применением путем разбавления раствора А в 100 раз водой.

1 см³ раствора Б содержит 0,002 мг меди.

Углерод четыреххлористый по ГОСТ 20288—74.

(Измененная редакция, Изм. № 1).

- 2.3. Проведение анализа
- 2.3.1. Навеску силумина массой $0.5\ r$ помещают в стакан вместимостью $250\ cm^3$ и приливают $20\ cm^3$ раствора гидроокиси натрия. После окончания бурной реакции раствор нагревают до полного растворения сплава, разбавляют водой и осторожно приливают 50 см³ соляной кислоты, разбавленной 1:1. Раствор нагревают до простветления, прибавляют 20-25 капель перекиси водорода и кипятят для разрушения ее избытка. Охлажденный раствор пере-

водят в мерную колбу вместимостью 250 см³, доливают до метки очищенной водой и перемешивают.

В зависимости от содержания меди отбирают аликвотную часть раствора 20—100 см³ в делительную воронку вместимостью 250 см³ (носик воронки должен быть сухим), разбавляют раствор, если это необходимо, до 100 см³ раствором молярной концентрации 0,2 моль/дм³ соляной кислоты, прибавляют 3 см³ раствора диэтилдитиофосфата никеля и приливают из бюретки (кран бюретки не смазывать) 5 см³ четыреххлористого углёрода.

Содержимое воронки энергично встряхивают в течение 1 мин, затем оставляют для расслаивания и после разделения фаз сливают окрашенный слой четыреххлористого углерода в сухой цилиндр с притертой пробкой. В делительную воронку приливают еще 5 см³ четыреххлористого углерода и повторяют экстрагирование. Экстракт сливают в тот же цилиндр и перемешивают.

Органическую фазу отделяют от водяной возможно тщатель-

нее, не допуская попадания водной фазы в цилиндр.

Оптическую плотность испытуемого раствора измеряют на фотоэлектроколориметре или спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны 420 нм.

Раствором сравнения служит четыреххлористый углерод.

Для удаления остатков влаги при наполнении кювет растворы пропускают через сухои беззольный фильтр или к экстрактам в цилиндрах прибавляют 1 г безводного сульфата патрия.

Содержание меди находят по градуировочному графику, учи-

тывая поправку контрольного опыта.

2.3.2. Построение градуировочного графика

В делительные воронки приливают из бюретки 0; 1,0; 2,0; 3,0; 4,0; 5,0; 7,0, 8,0 см³ стандартного раствора Б, что соответствует 0; 0,002; 0,004; 0,006; 0,008; 0,010; 0,014; 0,016 мг меди, разбавляют раствором молярной концентрации 0,2 моль/дм³ соляной кислоты до 100 см³, приливают 3 см³ раствора диэтилдитиофосфата никеля и экстрагируют диэтилдитиофосфат меди двумя порциями по 5 см³ четыреххлористого углерода.

Далее анализ проводят, как указано в п. 2.3.1.

Раствором сравнения служит четыреххлористый углерод.

По полученным значениям оптической плотности и известным массам меди в растворах строят градуировочный график.

2.4. Обработка результатов

2.4.1. Массовую долю меди (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{v_1 \cdot m \cdot 1000} ,$$

где m_1 — масса меди, найденная по градуировочному графику, мг:

V — общий объем раствора, см 3 ;

 v_1 — объем аликвотной части раствора, см³;

m — масса навески силумина, г.

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 1.

Таблица 1

	Абсолютные допускаемые расхождения. %	
Массовая доля меди. №	сходимости	вогироизводимости
От 0,001 до 0,005 включ. Св. 0,005 » 0,010 » » 0,010 » 0,040 »	0,0005 0,001 0,002	0,001 0,002 0,003

2.3.1—2.4.2. (Измененная редакция, Изм. № 1, 2).

3. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД

3.1. Сущность метода

Метод основан на растворении сплава в растворе едкого натра, подкислении щелочного раствора бромистоводородной кислотой до рН 1 и по іярографировании меди в интервале потенциалов от минус 0,05 до минус 0,4 В.

(Измененная редакция, Изм. № 1).

3.2. Аппаратура, реактивы и растворы

Полярограф переменного тока типа ПУ-1 или аналогичный Азот газообразный и жидкий технический по ГОСТ 9293--74 или аргон газообразный и жидкий по ГОСТ 10157--79.

Натрия гидроокись по ГОСТ 4328—77, раствор с массовой долей 20%.

Кислота бромистоводородная по ГОСТ 2062-77, разбавленная 2:1.

Бром по ГОСТ 4109-79.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1.

Аскорбиновая кислота, свежеприготовленный раствор с массовой долей 25%. Медь по ГОСТ 859—78.

Стандартные растворы меди: 1 г меди помещают в стакан вместимостью 250 см³, растворяют в 30 см³ азотной кислоты, разбавленной 1:1, обмывают стенки стакана водой. Раствор охлаждают, переводят в мерную колбу вместимостью 1000 см3, разбавляют до метки водой и перемешивают.

1 см3 раствора содержит 1 мг меди.

Путем соответствующего разбавления (перед применением) готовят раствор А с концентрацией меди 0,1 мг в 1 см3 раствора и раствор Б с концентрацией меди 0,01 мг в 1 см³ раствора.

3.3. Проведение анализа

3.3.1. Навеску силумина массой 0,5 г помещают в стакан вместимостью 100 см³, приливают 15 см³ гидроокиси натрия и покрывают часовым стеклом. После окончания бурной реакции раствор нагревают, кипятят в течение 3—5 мин до растворения сплава, охлаждают, разбавляют водой до объема 20 см³ и осторожно приливают 30 см³ бромистоводородной кислоты. Раствор нагревают до просветления. После охлаждения добавляют 2—3 капли брома и вновь нагревают до удаления избытка брома, доводя объем раствора до 45 см³. Затем добавляют по каплям раствор аскорбиновой кислоты до обесцвечивания раствора. Охлажденный раствор переводят в мерную колбу вместимостью 50 см³, доливают до метки водой и перемешивают.

Отливают часть раствора в электролизер с донной ртутью, пропускают азот в течение 5 мин и полярографируют в интервале потенциалов от минус 0,05 до минус 0,4 В при нужной чувствитель-

ности.

Содержание меди находят по градуировочному графику. (Измененная редакция, Изм. № 1, 2).

3.3.2. Построение градуировочного графика (при массовой доле меди от 0.005 до 0.02%)

В три стакана вместимостью по 25 см³ приливают последовательно 0,5; 1,0; 2,0 см³ стандартного раствора Б, что соответствует 0,005; 0,01; 0,02% меди. Растворы выпаривают досуха на водяной бане, к сухому остатку добавляют аликвотную часть 10 см³ одного из исследуемых растворов с меньшим содержанием меди, перемешивают, часть раствора помещают в электролизер и полярографируют, как указано в п. 3.3.1.

Из полученных высот пиков вычитают высоту пика разбавленного исследуемого раствора.

По полученным данным и известным концентрациям меди строят градуировочный график.

При замене капилляра необходимо проверять график.

3.3.3. Построение градуировочного графика (при массовой доле меди от 0,01 до 0,1%)

В три стакана вместимостью по $25~{\rm cm^3}$ приливают последовательно $0.1;~0.5;~1.0~{\rm cm^3}$ стандартного раствора A, что соответствует 0.01;~0.05;~0.1% меди. Далее анализ проводят, как указано в п. 3.3.2.

3.4. Обработка результатов

Массовую долю меди (X) в процентах определяют по градуировочному графику.

3.4.1. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, привеленных в табл. 2.

Таблица 2

Массовая доля меди, %	Абсолютные допускаемые расхождения, %	
	сходимости	воспроизводимости
От 0,005 до 0,010 включ Св. 0,010 » 0,040 » » 0,040 » 0,100 »	0,001 0,002 0,004	0,002 0,003 0,006

(Измененная редакция, Изм. № 2).

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

4.1. Сущность метода

Метод основан на измерении атомной абсорбции меди в пламени ацетилен-воздух при длине волны 324,7 нм.

4.2. Аппаратура, реактивы и растворы

Спектрометр атомно-абсорбционный модели Перкин-Эльмер, «Сатурн» или аналогичные.

Лампа с полым катодом, предназначенная для определения

Ацетилен в баллонах технический по ГОСТ 5457—75.

Электропечь муфельная с терморегулятором, обеспечивающая температуру 1000°С.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929—76, раствор с массовой долей 3%.

Алюминий марки А-999 по ГОСТ 11069—74.

Раствор алюминия A, 20 г./дм³: 10,0 г алюминия помещают в стакан вместимостью 600 см³, добавляют 250 см³ соляной кислоты, разбавленной 1:1. и растворяют при нагревании с добавлением 1 см³ хлористого никеля. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, разбавляют водой до метки и перемешнвают.

Натрий углекислый по ГОСТ 83—79.

Никель хлористый по ГОСТ 4038—79, раствор с массовой долей 0,2%.

Метиловый оранжевый, раствор с массовой долей 0,1%.

Кремния двубкись по ГОСТ 9428--73.

Раствор кремния Б, 1 г/дм³: 2,14 г тонко растертой в агатовой или из оргстекла ступке и предварительно прожаленной в те-

чение одного часа при температуре 1000°С, двуокиси кремния сплавляют в платиновом тигле с 15,0 г углекислого натрия при температуре 900°С в течение 15 мин до получения прозрачного плава. Плав растворяют в воде при нагревании в платиновой, серебряной или никелевой чашке. Раствор охлаждают, переводят в мерную колбу вместимостью 1000 см³, разбавляют до метки водой и перемешивают; раствор хранят в полиэтиленовой посуде. Натрий хлористый по ГОСТ 4233—77.

Раствор оксида натрия В, 100 г/дм³: 190 г высушенного при температуре 105°С в течение 30 мин хлористого натрия растворяют в воде. Раствор переводят в мерную колбу вместимостью 1000 см³, доводят до метки водой и перемешивают.

Натрия гидроокись по ГОСТ 4328—77, раствор с массовой долей 30%.

Медь сернокислая 5-водная по ГОСТ 4165-78.

Медь металлическая по ГОСТ 859-78.

Стандартные растворы меди

Раствор Д: 3,9258 г сернокислой меди растворяют в воде, переводят раствор в мерную колбу вместимостью 1000 см³, доводят до метки водой и перемешивают или 1,0000 г металлической меди растворяют в 20 см³ азотной кислоты, разбавленной 1:1. Раствор выпаривают до небольшого объема, добавляют 10 см³ соляной кислоты и вновь выпаривают до небольшого объема Выпаривание с соляной кислотой повторяют еще два раза. К остатку добавляют 15 см³ соляной кислоты, переводят раствор в мерную колбу вместимостью 1000 см³, разбавляют до метки водой и перемешивают.

1 см3 раствора Д содержит 1 мг меди.

Раствор Е: отбирают пипеткой 5 см³ раствора Д в мерную колбу вместимостью 200 см³, разбавляют водой до метки и перемешивают; готовят перед применением.

1 см3 раствора Е содержит 0,025 мг меди.

4.3. Проведение анализа

4.3.1. Навеску пробы силумина массой 0,5 г помещают в стакан вместимостью 250 см³ и приливают 20 см³ раствора гидроокиси натрия. После окончания бурной реакции раствор нагревают до полного растворения сплава, добавляют 100 см³ воды и осторожно в охлажденный раствор приливают 50 см³ соляной кислоты, разбавленной 1:1. Раствор нагревают до просветления, прибавляют 1 см³ пероксида водорода и кипятят 3—5 мин для разрушения ее избытка. Раствор охлаждают, переводят в мерную колбу вместимостью 250 см³, доводят до метки водой и перемещивают.

Одновременно проводят через все стадии анализа контрольный опыт, используя все реактивы, с добавлением 20 см³ раствора алюминия A.

Измеряют атомную абсорбцию меди в растворе пробы, раствора контрольного опыта и в растворах, приготовленных для построения градуировочного графика при длине волны 324,7 нм в пламени воздух-ацетилен.

Массовую долю меди определяют по градуировочному графику, который строят при каждой съемке.

4.3.2. Построение градуировочного графика

В семь мерных колб вместимостью 250 см³ приливают по 12,5 см³ раствора А, по 7 см³ раствора В и соответственно в каждую колбу 0; 1,0; 2,0; 3,0; 5,0; 10,0; 20,0 см³ раствора Е, что соответствует 0; 0,005; 0,01; 0,015; 0,025; 0,05; 0,1% массовой доли меди в силумине. Растворы доводят водой до объема 100 см³ и, медленно порциями, тщательно перемешивая, приливают по 25 см³ раствора Б, прибавляют 3—4 капли индикатора метилового оранжевого и по каплям соляную кислоту, разбавленную 1:1, до изменения окраски индикатора в красный цвет. Затем растворы в колбах доводят до метки водой, перемешивают и измеряют атомную абсорбцию меди, как указано в п. 4.3.1.

По полученным значениям атомной абсорбции растворов и известным значениям массовой доли меди строят градуировочный

график.

4.4. Обработка результатов

4.4.1. Массовую долю меди в процентах находят по градуи-

ровочному графику, за вычетом контрольного опыта.

4.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 2.

Разд. 4. (Введен дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ СТАНДАРТА

- А. А. Костюков, Г. А. Романов, Н. М. Герцева, А. П. Нечитайлов, В. А. Лавров
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 08.10.77 № 141
- 3. Перходичность проверки 5 лет
- 4. ВЗАМЕН ГОСТ 1762-51 [в части разд. VII]
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылья	Номер пунктя	
FOCT 83—79 FOCT 859—78 FOCT 1762.0—71 FOCT 2062—77 FOCT 3118—77 FOCT 4038—79 FOCT 4109—79 FOCT 4165—78 FOCT 4233—77 FOCT 4233—77 FOCT 4328—77 FOCT 4461—77 FOCT 5457—75 FOCT 9293—74 FOCT 10157—79 FOCT 10157—79 FOCT 10169—74 FOCT 20298—74 FOCT 20298—74	4.2 2.2; 3.2; 4.2 1.1 3.2 2.2; 3.2; 4.2 4.2 3.2 4.2 2.2 4.2 2.2; 3.2; 4.2 2.2; 3.2; 4.2 4.2 3.2 4.2 2.2; 3.2; 4.2 4.2 3.2 4.2 3.2 4.2 3.2 4.2 3.2 4.2 3.2 4.2 3.2 4.2 3.2; 3.2; 4.2 4.2 3.2 4.2 3.2 4.2 3.2 4.2 3.2; 3.2; 4.2 4.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 4.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3	

- Срок действия продлен до 01.07.95 Постановлением Госстандарта СССР от 27.03.89 № 742
- 7. ПЕРЕИЗДАНИЕ (май 1989 г.) с Изменениями № 1, 2, утвержденными в августе 1984 г., в марте 1989 г. (ИУС 12—84, 6—89)