межгосударственный стандарт

БРОНЗЫ БЕЗОЛОВЯННЫЕ

Методы определения кремния

ΓΟCT 15027.6—77

Non-tin bronze.

Methods for the determination of silicon

ОКСТУ 1709

Дата введения 01.01.79

Настоящий стандарт устанавливает гравиметрический метод в кремнистых бронзах (при массовой доле кремния от 0,5% до 4%), экстракционно-фотометрический метод в бронзах с массовой долей железа свыше 1% (при массовой доле кремния от 0,01% до 0,25%) и фотометрический метод в бронзах остальных марок (при массовой доле кремния от 0,01% до 0,3%) в безоловянных бронзах по ГОСТ 18175, ГОСТ 614 и ГОСТ 493.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 25086 с дополнением по разд. 1 ГОСТ 15027.1.

(Измененная редакция, Изм. № 1, 2).

2. ГРАВИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ В КРЕМНИСТЫХ БРОНЗАХ

2.1. Сущность метода

Метод основан на выделении кремниевой кислоты осаждением с добавлением желатина из солянокислого раствора.

2.2. Реактивы и растворы

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204 и разбавленная 1:4.

Кислота соляная по ГОСТ 3118 и разбавленная 5:95.

Кислота фтористоводородная по ГОСТ 10484.

Смесь кислот для растворения; готовят следующим образом: смешивают одну часть азотной кислоты и три части соляной кислоты.

Желатин пищевой по ГОСТ 11293, раствор 10 г/дм³.

Калий железистосинеродистый по ГОСТ 4207, раствор 30 г/дм³.

(Измененная редакция, Изм. № 2).

2.3. Проведение анализа

Навеску бронзы марки БрКМц3—1 массой 1 г бронзы марки БрКН1—3 массой 2 г помещают в стакан вместимостью 250 см³, добавляют 20 см³ воды, 20 см³ смеси кислот и растворяют при нагревании. Раствор выпаривают досуха, смачивают остаток 10 см³ концентрированной соляной кислотой и выпаривают досуха, затем еще два раза выпаривают досуха, добавляя перед выпариванием по 10 см³ концентрированной соляной кислоты. После этого остаток смачивают 10 см³ концентрированной соляной кислоты и через 3—5 мин приливают 70—80 см³ горячей воды, 5 см³ раствора желатина и нагревают до полного растворения солей. Фильтруют остаток на фильтр сред-

ней плотности, уплотненный фильтробумажной массой, и промывают сначала 8-10 раз горячим раствором соляной кислоты (5:95) до исчезновения реакции на медь (проба с раствором железистосинеродистого калия), а затем горячей водой до исчезновения реакции на ион хлорида. Фильтр с осадком помещают в платиновый тигель, сушат, озоляют, смачивают $0.5~{\rm cm}^3$ концентрированной азотной кислоты, высушивают и прокаливают при $1000-1050~{\rm cm}^2$ с до постоянной массы, затем охлаждают в эксикаторе и взвешивают. Содержимое тигля смачивают несколькими каплями воды, добавляют 3-4 капли серной кислоты, $1-2~{\rm cm}^3$ фтористоводородной кислоты, осторожно выпаривают досуха и остаток прокаливают при $1000-1050~{\rm cm}^2$ до постоянной массы, охлаждают в эксикаторе и взвешивают.

Если после удаления кремниевой кислоты в тигле остается черный осадок карбида кремния, его сплавляют с безводным углекислым натрием и сплав обрабатывают серной кислотой, разбавленной 1:4, раствор выпаривают до появления белого дыма серной кислоты, охлаждают, приливают 5 см³ соляной кислоты, 80 см³ горячей воды и кипятят. Дополнительно выделенный осадок кремниевой кислоты отфильтровывают, промывают и далее анализ ведут, как указано выше.

Одновременно через все стадии анализа проводят контрольный опыт и в найденное содержание кремния вводят соответствующую поправку.

(Измененная редакция, Изм. № 2).

2.4 Обработка результатов

2.4.1. Массовую долю кремния (X) в процентах вычисляют по формуле

$$X = \frac{(m - m_1) \cdot 0.4672 \cdot 100}{m_2},$$

где m — масса тигля с осадком двуокиси кремния до обработки фтористоводородной кислоты, г;

 m_1 — масса тигля с осадком после обработки фтористоводородной кислотой, г;

 m_2 — масса сплава, г;

0,4672 — коэффициент пересчета двуокиси кремния на кремний.

2.4.2. Абсолютные расхождения результатов параллельных определений (*d* — показатель сходимости) не должны превышать допускаемых значений, приведенных в таблице.

Массовая доля кремния, %	d, %	D, %	Массовая доля кремния, %	d, %	D, %
От 0,01 до 0,02	0,002	0,005	Св. 0,20 до 0,30	0,02	0,05
Св. 0,02 » 0,05	0,005	0,01	» 0,30 » 0,40	0,03	0,07
» 0,05 » 0,10	0,008	0,02	» 0,50 » 1,0	0,05	0,1
» 0,10 » 0,20	0,012	0,03	» 2,5 » 4,0	0,10	0,2

(Измененная редакция, Изм. № 2).

2.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости), не должны превышать значений, приведенных в таблице.

2.4.4. Контроль точности результатов анализа

Контроль точности результатов анализа проводят по Государственным стандартным образцам безоловянных бронз, аттестованным в установленном порядке, в соответствии с ГОСТ 25086.

2.4.3, 2.4.4. (Введены дополнительно, Изм. № 2).

3. ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ

3.1. Сущность метода

Метод основан на образовании кремнемолибденовой кислоты, экстракции ее бутиловым спиртом, восстановлении ее в экстракте до кремнемолибденовой сини и измерении интенсивности образовавшейся окраски.

3.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461, разбавленная 1:2.

Кислота серная по ГОСТ 4204, разбавленная 1:9.

4-2-778 53

С. 3 ГОСТ 15027.6—77

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Кислота лимонная по ГОСТ 3652, раствор 500 г/дм 3 .

Кислота борная по ГОСТ 9656, насыщенный раствор; готовят следующим образом: около 60 г борной кислоты растворяют в 1 дм^3 горячей воды.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный раствор 100 г/дм³.

Для перекристаллизации молибденовокислого аммония 70 г препарата растворяют в 400 дм³ воды при слабом нагревании (70—80 °C). Раствор фильтруют два раза через один и тот же плотный фильтр, фильтрат охлаждают и прибавляют 250 см³ этилового спирта. После отстаивания в течение 1 ч выделившиеся кристаллы отсасывают. Полученный молибденовокислый аммоний растворяют в воде и повторяют перекристаллизацию.

После второго отсасывания кристаллы промывают несколько раз смесью спирта с водой (5:8) и высушивают на воздухе.

Олово двухлористое по ТУ 6—09—5384, раствор 20 г/дм^3 готовят следующим образом: $2 \text{ г соли растворяют в } 100 \text{ см}^3$ нагретой до 80— $90 ^{\circ}\text{C}$ соляной кислоты, разбавленной 1:1.

Калий-натрий углекислый по ГОСТ 4332.

Промывные растворы.

Раствор A; готовят следующим образом: к 50 см³ воды прибавляют 12 см³ концентрированной азотной кислоты и 5 см³ раствора молибденовокислого аммония.

Раствор Б; готовят следующим образом: к 50 см³ серной кислоты, разбавленной 1:9, прибавляют 5 см³ раствора молибденовокислого аммония и 5 см³ лимонной кислоты.

Кристаллический фиолетовый, водный раствор 1 г/дм³.

Фенолфталеин, спиртовой раствор 1 г/дм³.

Спирт бутиловый нормальный по ГОСТ 6006.

Спирт этиловый ректификованный по ГОСТ 18300 и разбавленный 5:8.

Мочевина по ГОСТ 6691, раствор 100 г/дм 3 .

Натрий сернокислый безводный по ГОСТ 4166.

Кремния двуокись по ГОСТ 9428.

Стандартные растворы кремния.

Раствор А; готовят следующим образом: 0,2143 г прокаленной двуокиси кремния сплавляют в платиновом тигле с 2 г натрия-калия углекислого. Сплав выщелачивают водой и переносят в мерную колбу вместимостью $500~{\rm cm}^3$, до метки доливают водой и перемешивают. Раствор немедленно переносят в полиэтиленовый сосуд.

1 см³ раствора А содержит 0,0002 г кремния.

Раствор Б; готовят следующим образом: 2,5 см³ раствора А помещают в делительную воронку вместимостью 200 см³, добавляют 50 см³ воды, 2—3 капли раствора фенолфталеина и по каплям азотную кислоту, разбавленную 1:2, до исчезновения розовой окраски и затем 1 см³ в избыток, приливают 5 см³ раствора молибденовокислого аммония, разбавляют водой до 100 см³, перемешивают и оставляют на 10 мин. После этого прибавляют 5 см³ н-бутилового спирта, 10 см³ азотной кислоты, разбавленной 1:2, перемешивают, переворачивая 2—3 раза, прибавляют 25 см³ бутилового спирта и осторожно перемешивают, переворачивая воронку 30 раз. При этом кремнемолибденовая кислота извлекается в бутиловый спирт, окрашивая его в желтый цвет со слабым зеленоватым оттенком. После разделения фаз водный слой сливают в другую делительную воронку. Затем повторяют экстракцию до получения бесцветного экстракта, применяя каждый раз по 10 см³ н-бутилового спирта.

Экстракты объединяют и промывают 50 см³ промывного раствора А, переворачивая воронку осторожно 20—25 раз. Водный слой сливают, а оставшийся промытый органический слой переводят в мерную колбу с притертой пробкой вместимостью 100 см³, доливают до метки бутиловым спиртом и перемешивают.

1 см³ раствора Б содержит 0,000005 г кремния.

3.3. Проведение анализа

3.3.1. Навеску бронзы массой 0.2 г помещают в платиновый или фторопластовый тигель, прибавляют 1 см^3 фтористоводородной кислоты, 5 см^3 азотной кислоты, разбавленной 1.2, и накрывают платиновой или фторопластовой крышкой. Растворение образца проводят при нагревании на

водяной бане до 60 °C. После растворения в тигель прибавляют 10 см³ раствора борной кислоты и смесь переносят в стакан вместимостью 100 см³, в который уже добавлено 20 см³ раствора борной кислоты. Раствор разбавляют водой до 50 см³ и прибавляют аммиак, разбавленный 1:1, при постоянном перемешивании до рН 1,5. Устанавливают рН капельной пробой с раствором кристаллического фиолетового на белой фарфоровой или фторопластовой пластинке. При рН меньше 1,5 капля испытуемого раствора, смешанная с каплей индикатора, окрашивается в зеленый цвет при рН 1,5 смесь окрашивается в фиолетовый цвет.

Раствор переносят в делительную воронку вместимостью 200—250 см³ тшательно обмывают стакан водой в раствор в делительной воронке разбавляют до 100 см³. Затем добавляют 5 см³ раствора мочевины, 5 см³ раствора молибденовокислого аммония и перемешивают. Через 10 мин вводят 5 см³ раствора лимонной кислоты и перемешивают. Приливают 5 см³ н-бутилового спирта для насыщения раствора, 20 см³ азотной кислоты, разбавленной 1:2, и перемешивают. К смеси добавляют 15 см³ н-бутилового спирта и осторожно, во избежание образования эмульсии, перемешивают, переворачивая воронку 30 раз. Жидкостям дают расслоиться (водный слой должен стать прозрачным). После расслоения фаз водный слой переносят во вторую делительную воронку вместимостью 200— 250 см³, наливают 10 см³ н-бутилового спирта и воронку осторожно переворачивают 30 раз. После расслоения жидкостей водный слой переносят в третью воронку, а органический слой присоединяют к первой порции бутанольного экстракта. Экстракцию повторяют еще раз с 10 см³ н-бутилового спирта. Объединенные экстракты промывают 50 см³ промывного раствора Б, переворачивая осторожно воронку 20—25 раз. После расслоения водный слой отбрасывают, а органический слой сливают в мерную колбу вместимостью 50 см³, в которую уже добавлено 0,2 г сернокислого натрия, и доливают до метки н-бутиловым спиртом. Аликвотную часть объемом 20 см³ (при массовой доле кремния от 0.01% до 0.04%), 5 см³ (при массовой доле кремния от 0.04% до 0.1%) и 2 см³ (при массовой доле кремния от 0.1% до 0.25%) помещают в мерную колбу вместимостью 50 см³, добавляют н-бутиловый спирт до 45 см³, 2—3 капли раствора двухлористого олова, доливают до метки бутиловым спиртом и перемешивают. Через 20-25 мин измеряют оптическую плотность на фотоэлектроколориметре в кювете длиной 2 см с красным светофильтром ($\lambda = 610$ нм) или на спектрофотометре при длине волны 810 нм. В качестве раствора сравнения применяют н-бутиловый спирт.

Через все стадии анализа проводят контрольный опыт.

3.3.2. Построение градуировочного графика

В восемь мерных колб вместимостью по 50 см 3 вводят 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 и 7,0 см 3 стандартного раствора Б, прибавляют н-бутиловый спирт до 45 см 3 и далее анализ ведут, как указано в п. 3.3.1.

3.4. Обработка результатов

3.4.1. Массовую долю никеля (X_1) в процентах вычисляют по формуле

$$X_1 = \frac{m \cdot 100}{m_1},$$

где т — масса кремния, найденная по градуировочному графику, г;

 m_1 — масса навески, соответствующая аликвотной части раствора, г.

 $\tilde{3}$.4.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в таблице.

(Измененная редакция, Изм. № 2).

- 3.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D- показатель воспроизводимости), не должны превышать значений, приведенных в таблице.
 - 3.4.4. Контроль точности результатов анализа проводят по п. 2.4.4.
 - 3.4.3, 3.4.4. (Введены дополнительно, Изм. № 2).

4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ КРЕМНИЯ

4.1. Сущность метода

Метод основан на образовании кремнием желтой кремнемолибденовой кислоты и измерении оптической плотности окрашенного раствора.

4.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

4-2*

С. 5 ГОСТ 15027.6—77

Кислота азотная по ГОСТ 4461, разбавленная 1:2.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Кислота фтористоводородная, по ГОСТ 10484.

Кислота лимонная по ГОСТ 3652, раствор 100 г/дм³.

Кислота ортофосфорная по ГОСТ 6552, разбавленная 1:9.

Кислота борная по ГОСТ 9656, насыщенный раствор; готовят следующим образом: около 60 г борной кислоты растворяют в 1 дм 3 горячей воды. Перед применением раствор охлаждают до температуры около 20 °C.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

Медь марки М0 по ГОСТ 859.

Мочевина по ГОСТ 6691, раствор 100 г/дм^3 .

Кристаллический фиолетовый, водный раствор.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный (см. п. 3.2) свежеприготовленный раствор $100~\rm r/дm^3$.

Натрий-калий углекислый по ГОСТ 4332.

Кремния двуокись по ГОСТ 9428.

Стандартные растворы кремния.

Раствор А; готовят следующим образом: 0,2143 г прокаленной двуокиси кремния сплавляют в платиновом тигле с 2 г углекислого калия-натрия. Сплав вышелачивают водой и переносят в мерную колбу вместимостью 500 см³, до метки доливают водой и перемешивают. Раствор немедленно переносят в полиэтиленовый сосуд.

 1 см^3 раствора A содержит 0,0002 г кремния.

Раствор Б; готовят следующим образом: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, разбавляют водой до метки и перемешивают. Раствор немедленно переносят в полиэтиленовый сосуд.

1 см³ раствора Б содержит 0,00002 г кремния.

Раствор меди для приготовления раствора сравнения; готовят следующим образом: 1 г меди помещают в платиновую чашку, прибавляют 1 см³ фтористоводородной кислоты, 11 см³ азотной кислоты, разбавленной 1:2. Растворение проводят при нагревании. Затем прибавляют 2,5 см³ серной кислоты, разбавленной 1:1, и нагревают раствор до удаления свободной серной кислоты. После охлаждения соли растворяют, прибавляя небольшое количество воды, 11 см³ азотной кислоты, разбавленной 1:2, и 1 см³ фтористоводородной кислоты. Затем прибавляют 30 см³ раствора борной кислоты, раствор переносят в мерную колбу вместимостью 100 см³, до метки доливают водой и перемешивают.

(Измененная редакция, Изм. № 2).

4.3. Проведение анализа

4.3.1. Навеску бронзы массой 1 г помещают в платиновый или фторопластовый тигель, прибавляют $1~{\rm cm}^3$ фтористоводородной кислоты, $11~{\rm cm}^3$ азотной кислоты, разбавленной 1:2, и накрывают платиновой или фторопластовой крышкой. Растворение проводят при нагревании на водяной бане до $60~{\rm cm}$. После растворения в тигель прибавляют $10~{\rm cm}^3$ раствора борной кислоты и раствор переносят через полиэтиленовую воронку в мерную колбу вместимостью $100~{\rm cm}^3$, содержащую $20~{\rm cm}^3$ раствора борной кислоты, доливают до метки водой и перемешивают.

Аликвотную часть раствора 20 см³ (при массовой доле кремния от 0,01% до 0,05%), 5 см³ (при массовой доле кремния от 0,10% до 0,30%) или 10 см³ (при массовой доле кремния от 0,05% до 0,1%) помещают в стакан вместимостью 50 см³, добавляют азотную кислоту в количестве 0,2 см³ (при аликвотной части — 20 см³); 0,6 см³ (при аликвотной части — 10 см³) и 0,8 см³ (при аликвотной части — 5 см³), доливают водой до 20 см³ и проверяют рН раствора на рН-метре или капельной пробой с раствором кристаллического фиолетового на белой пластинке из фторопласта. Раствор должен иметь рН 1,5, если раствор не имеет рН 1,5, то рН устанавливают с помощью раствора аммиака или азотной кислоты. При значении рН меньше 1,5 капля испытуемого раствора, смешанная с каплей индикатора, окрашивается в зеленый цвет, при рН, равном 1,5, окраска смешанной капли становится чисто-синего цвета. Если аммиак введен в избытке, то смешанная капля имеет фиолетовый цвет. В таких случаях прибавляют азотную кислоту, разбавленную 1:2, до получения окраски смешанной капли зеленого цвета, а затем осторожно повторяют нейтрализацию аммиаком. В раствор, имеющий рН 1,5, прибавляют 5 см³ раствора мочевины, 5 см³ раствора молибденовокис-

лого аммония и оставляют на 10 мин. После этого вводят 5 см³ раствора лимонной кислоты, 3 см³ раствора ортофосфорной кислоты, смесь переносят в мерную колбу вместимостью 50 см³, до метки доливают водой и перемешивают. Через 15 мин измеряют оптическую плотность раствора при длине волны 400 нм в кювете длиной 5 см относительно раствора сравнения. Раствор сравнения готовят одновременно с анализируемой пробой, беря раствор меди (см. п. 4.2) в таком же количестве, как и анализируемый раствор.

Содержание кремния находят по градуировочному графику.

(Измененная редакция, Изм. № 1, 2).

4.3.2. Построение градуировочного графика

В шесть стаканов вместимостью по 50 см³ прибавляют по 10 см³ раствора меди, не содержащей кремния (раствор сравнения), последовательно 0; 1,0; 2,0; 4,0; 6,0 и 8,0 см³ стандартного раствора Б. Растворы разбавляют водой до 20 см³ и далее анализ ведут, как указано в п. 4.3.1.

4.4. Обработка результатов

4.4.1. Массовую долю никеля (X_2) в процентах вычисляют по формуле

$$X_2 = \frac{m \cdot 100}{m_1},$$

где m — масса кремния, найденная по градуировочному графику, г;

 m_1 — масса навески, соответствующая аликвотной части раствора, г.

4.4.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

(Измененная редакция, Изм. № 2).

- 4.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.
 - 4.4.4. Контроль точности результатов анализа проводят по п. 2.4.4.
 - 4.4.3, 4.4.4. (Введены дополнительно, Изм. № 2).

C. 7 FOCT 15027.6-77

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 28.06.77 № 1614
- 3. B3AMEH FOCT 15027.6-69
- 4. Стандарт полностью соответствует СТ СЭВ 1539-79
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер раздела, пункта, подпункта
FOCT 493—79 FOCT 614—97 FOCT 859—2001 FOCT 3118—77 FOCT 3652—69 FOCT 3760—79 FOCT 3765—78 FOCT 4166—76 FOCT 4204—77 FOCT 4207—75 FOCT 4332—76	Вводная часть Вводная часть 4.2 2.2, 3.2 3.2, 4.2 3.2, 4.2 3.2, 4.2 3.2 2.2, 3.2, 4.2 2.2 3.2, 4.2	FOCT 4461—77 FOCT 6006—78 FOCT 6552—80 FOCT 6691—77 FOCT 9428—73 FOCT 9656—75 FOCT 10484—78 FOCT 11293—89 FOCT 18175—78 FOCT 18300—87 FOCT 25086—87 TY 6—09—5384—88	2.2, 3.2. 4.2 3.2 4.2 3.2, 4.2 3.2, 4.2 3.2, 4.2 2.2, 3.2, 4.2 2.2 Вводная часть 3.2 1.1, 2.4.4

- 6. Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 7. ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в феврале 1983 г., марте 1988 г. (ИУС 6—83, 6—88)