межгосударственный стандарт

АЛЮМИНИЙ

Методы определения цинка

ГОСТ 12697.9—77

Aluminium.

Methods for determination of zinc

Взамен ГОСТ 12705—67 в части разд. 2, 3

МКС 77.120.10 ОКСТУ 1709

Постановлением Государственного комитета стандартов Совета Министров СССР от 27.09.77 № 2315 дата введения установлена

01.01.79

Ограничение срока действия снято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт устанавливает методы определения цинка в алюминии:

- фотометрический с нофапрозидом при массовой доле от 0,003 до 0,15 %;
- фотометрический с дитизоном при массовой доле цинка от 0,0002 до 0,003 %;
- полярографический при массовой доле от 0,001 до 0,1 %;
- атомно-абсорбционный при массовой доле от 0,001 до 0,02 %.

(Измененная редакция, Изм. № 1, 3).

1. ОБШИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 12697.1—77 и ГОСТ 25086—87. (Измененная редакция, Изм. № 2, 3).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЦИНКА С НОФАПРОЗИДОМ (при массовой доле цинка от 0,003 до 0,15 %)

2.1. Сущность метода

Метод основан на образовании окрашенного комплексного соединения с нофапрозидом, который хорошо растворяется в водноацетоновой среде.

Окрашенный раствор фотометрируют при $\lambda = 646$ нм.

2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр типов ФЭК-56M, ФЭК-60, КФК или спектрофотометр типов СФ-16, СФ-26, или аналогичного типа.

рН-метр типа рН-340 или аналогичного типа.

Весы лабораторные по ГОСТ 24104—88 * 2-го класса точности с погрешностью взвешивания 0,0002 г.

Сита с сеткой №№ 016 и 0315 по ГОСТ 6613—86.

Колонка хроматографическая стеклянная.

Кислота соляная особой чистоты по ГОСТ 14261-77, разбавленная 1:1; 2 моль/дм³ и 0,005 моль/дм³ растворы.

Издание официальное

Перепечатка воспрещена

Издание с Изменениями № 1, 2, 3, утвержденными в декабре 1980 г., ноябре 1985 г., мае 1988 г. (ИУС 3—81, 2—86, 8—88).

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001 (здесь и далее).

Вода дистиллированная, не содержащая тяжелых металлов. В случае необходимости ее очищают пропусканием через слой сильнокислотного катионита (КУ-1, КУ-2), как указано в ГОСТ 12697.8—77.

Натрия гидроксид по ГОСТ 4328—77; 0,2 моль/дм³ раствор. Хранят в полиэтиленовой посуде.

Бумага индикаторная конго.

Кислота уксусная по ГОСТ 61—75.

Натрий уксуснокислый по ГОСТ 199—78; 0,2 моль/дм³ раствор; рН этого раствора устанавливают равным 6,2 уксусной кислотой или гидроксидом натрия.

Ацетон по ГОСТ 2603—79.

Нофапрозид (N'-[1-(4-нитро-2-оксифенилазо)-2-нафтил]-пропионилгидразид), раствор с массовой долей 0.028~% в ацетоне.

Цинк по ГОСТ 3640—94.

Смола анионообменная, сильноосновная, типа АВ-17, размер зерен 0,160—0,315 мм.

Смолу готовят следующим образом: истирают анионит, просеивают его через сито № 0315, отбрасывая фракцию с размером зерен более 0,315 мм. Затем остальную смолу просеивают через сито № 016, при этом фракцию с размером зерен менее 0,160 мм отбрасывают и собирают фракцию, оставшуюся на сите. Отобранную фракцию промывают декантацией 0,005 моль/дм³ раствором соляной кислоты. Промывают фракцию до тех пор, пока сливаемый раствор не будет прозрачным. Затем промытую смолу выдерживают в 0,005 моль/дм³ соляной кислоты примерно 12 ч.

Подготовленную таким образом смолу переносят в ионообменную колонку, на дно которой предварительно помещают небольшой слой стеклянной ваты. Высота слоя анионита при диаметре зерен 0,160—0,315 мм и диаметре колонки 10 мм должна составлять 100—120 мм.

Подготовленную колонку промывают $100 \text{ см}^3 0{,}005 \text{ моль/дм}^3$ соляной кислоты при скорости пропускания $5-7 \text{ см}^3$ /мин. После этого через колонку пропускают $50 \text{ см}^3 2 \text{ моль/дм}^3$ соляной кислоты со скоростью $1-1{,}5 \text{ см}^3$ /мин.

Смола в колонке должна все время находиться под слоем жидкости.

Растворы цинка стандартные.

Раствор A; готовят следующим образом: 0,5000 г цинка растворяют в 20 см³ соляной кислоты, разбавленной 1:1. Раствор переводят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

 1 см^3 раствора содержит 0.5 мг цинка (Zn).

Раствор Б; готовят перед употреблением следующим образом: пипеткой отбирают 10 см³ раствора А в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0.005 мг цинка (Zn).

(Измененная редакция, Изм. № 3).

- 2.3. Проведение анализа
- 2.3.1. Навеску алюминия массой 0,25—2 г в зависимости от предполагаемой массовой доли цинка помещают в стакан вместимостью 150—250 см³, приливают 30—60 см³ соляной кислоты, разбавленной 1:1, накрывают стакан часовым стеклом и нагревают до растворения навески. После полного растворения алюминия стекло обмывают водой и упаривают раствор до начала выпадения солей.

К раствору добавляют 17 см 3 соляной кислоты, разбавленной 1:1, и разбавляют его до 50 см 3 водой. Раствор в стакане перемешивают.

Полученный 2 моль/дм³ солянокислый раствор пропускают через ионообменную колонку со скоростью 1-1,5 см³/мин. При этом хлоридный комплекс цинка сорбируется анионитом и цинк отделяется от мешающих примесей, которые проходят через колонку, не поглощаясь.

Затем химический стакан и колонку промывают тремя порциями по $25 \text{ см}^3 2 \text{ моль/дм}^3$ соляной кислоты, пропуская ее со скоростью $1-1.5 \text{ см}^3/\text{мин}$.

Прошедшие через колонку растворы отбрасывают.

Цинк, поглощенный анионитом, вымывают $150 \text{ см}^3 0,005 \text{ моль/дм}^3 \text{ соляной кислоты, собирая элюат в стакан вместимостью <math>250 \text{ см}^3$. Скорость пропускания кислоты $1-1,5 \text{ см}^3$ /мин.

Полученный элюат переносят в мерную колбу вместимостью 200 см³, доливают раствор 0,005 моль/дм³ соляной кислоты до метки и перемешивают.

Для того, чтобы колонку можно было снова использовать после извлечения цинка, через нее пропускают 50 см 3 2 моль/дм 3 соляной кислоты со скоростью 1—1,5 см 3 /мин. Раствор, прошедший через колонку, отбрасывают.

C. 3 FOCT 12697.9-77

Отбирают пипеткой 10 см³ испытуемого раствора в мерную колбу вместимостью 50 см³ и нейтрализуют его 0,2 моль/дм³ раствором гидроксида натрия, добавляя его по капле до сиреневой окраски бумаги конго. Затем приливают 10 см³ ацетата натрия с рН, равным 6,2, 20 см³ ацетона и пипеткой 1 см³ раствора нофапрозида. Раствор доливают до метки ацетоном и перемешивают.

Соотношение водного и ацетонового растворов должно быть 1:1,5.

Измеряют оптическую плотность раствора на фотоэлектроколориметре или на спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны 646 нм. Раствором сравнения служит вода.

Одновременно проводят контрольный опыт. Для этого в стакан наливают 30-60 см³ соляной кислоты, разбавленной 1:1 (в зависимости от того, какое количество кислоты идет на растворение навески), и выпаривают приблизительно до 17 см³, затем разбавляют раствор до 50 см³ и далее анализ проводят, как указано в п. 2.3.1.

Массу цинка определяют по градуировочному графику, учитывая поправку контрольного опыта.

2.3.2. Построение градуировочного графика

В мерные колбы вместимостью по 50 см³ приливают из микробюретки 0; 0,5; 1,0; 2,0; 3,0; 4,0 см³ стандартного раствора Б, что соответствует 0; 0,0025; 0,005; 0,010; 0,015; 0,020 мг цинка. Разбавляют до 10 см³ раствором 0,005 моль/дм³ соляной кислоты и нейтрализуют 0,2 моль/дм³ раствором гидроксида натрия, добавляя его по каплям до сиреневой окраски бумаги конго. Далее анализ проводят, как указано в п. 2.3.1.

Раствором сравнения служит раствор, в который цинк не добавлялся.

По полученным значениям оптических плотностей растворов и известным массам цинка строят градуировочный график.

2.3.1, 2.3.2. (Измененная редакция, Изм. № 3).

2.4. Обработка результатов

2.4.1. Массовую долю цинка (X) в процентах вычисляют по формуле

$$X=\frac{m\cdot V\cdot 100}{V_1\cdot m_1\cdot 1000},$$

где m — масса цинка, найденная по градуировочному графику, мг;

V — общий объем раствора, см³;

 V_1 — объем аликвотной части раствора, см³; m_1 — масса навески алюминия, г.

2.4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 1.

Таблица 1

Массовая доля цинка, %	Допускаемое расхождение, %	
	сходимости, отн.	воспроизводимости, отн.
От 0,003 до 0,01 включ.	25	40
Св. 0,01 » 0,03 »	20	30
» 0,03 » 0,10 »	15	25
» 0,10	10	15

(Измененная редакция, Изм. № 1, 3).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЦИНКА С ДИТИЗОНОМ (при массовой доле цинка от 0,0002 до 0,003 %)

3.1. Сущность метода

Метод основан на образовании окрашенного комплексного соединения цинка с дитизоном. Образующийся дитизонат цинка экстрагируют четыреххлористым углеродом. Влияние мешающих элементов устраняют применением тройной экстракции. Заканчивают определение по методу одноцветной окраски, удаляя избыток дитизона раствором сернистого натрия.

Окрашенный раствор фотометрируют при $\lambda = 538$ нм.

3.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр типов ФЭК-56M, ФЭК-60, КФК или спектрофотометр типов СФ-16, СФ-26 или аналогичного типа.

Автотрансформатор лабораторный (ЛАТР) типа ЛАТР-1М или селеновый выпрямитель, применяя электроды Фишера.

Весы лабораторные по ГОСТ 24104—2001 2-го класса точности с погрешностью взвешивания 0.0002 г.

Кислота соляная особой чистоты по ГОСТ 14261—77; 4 и 0.02 моль/дм³ растворы.

Вода дистиллированная, не содержащая тяжелых металлов.

Дистиллированную воду очищают пропусканием через слой сильнокислотного катионита (КУ-1, КУ-2), как указано в ГОСТ 12697.8—77.

Все реактивы готовят на очищенной таким способом воде.

Аммиак водный по ГОСТ 3760—79, очищенный, готовят насыщением воды парами аммиака, для чего в эксикатор наливают раствор аммиака, на вкладыш эксикатора помещают кварцевую чашку, содержащую воду. Через 12 ч вода насыщается аммиаком. Концентрацию аммиака устанавливают титрованием и разбавляют до необходимой концентрации.

Натрий лимоннокислый, трехзамещенный, раствор с массовой долей 50 %. Раствор очищают следующим образом: в делительную воронку вместимостью 500 см³ помещают 300 см³ лимоннокислого натрия, добавляют к раствору несколько капель фенолфталеина и приливают аммиак до получения малиновой окраски. Затем экстрагируют порциями раствора дитизона с массовой долей 0,01 %. Экстрагирование повторяют до получения неизменяющейся зеленой окраски экстракта. Последнюю порцию проверяют на содержание тяжелых металлов. Для этого избыток дитизона удаляют встряхиванием экстракта с раствором разбавленного аммиака. Слой четыреххлористого углерода должен быть бесцветным. Для извлечения дитизона, перешедшего в раствор лимоннокислого натрия, последний встряхивают с несколькими порциями четыреххлористого углерода до получения бесцветного нижнего слоя.

Аммоний лимоннокислый, двузамещенный по НД, 0.5 моль/дм³ раствор, очищают так же, как лимоннокислый натрий.

Натрий сернистый (сульфид натрия) по ГОСТ 2053—77, растворы с массовой долей 1 % и с массовой долей 0,05 %. Последний готовят перед употреблением разбавлением раствора с массовой долей 1 %.

Натрия N'N-диэтилдитиокарбамат по ГОСТ 8864—71, свежеприготовленный раствор с массовой долей $0.2\,\%$.

Маскировочные растворы:

Раствор 1; готовят следующим образом: к 100 см³ 0,5 моль/дм³ раствора лимоннокислого аммония прибавляют 32 см³ 1 моль/дм³ раствора аммиака и разбавляют водой до 450 см³.

Раствор 2; готовят следующим образом: один объем раствора диэтилдитиокарбамата натрия смешивают с девятью объемами раствора 1.

Углерод четыреххлористый по ГОСТ 20288—74. В случае необходимости очищают следующим образом: к 1 дм 3 четыреххлористого углерода добавляют 0,5 г твердого дитизона и выдерживают в течение 1 ч на водяной бане при 35 °C. Затем проводят отгонку в стеклянном перегонном аппарате.

Дитизон (дифенилтиокарбазон) по НД, растворы с массовой долей 0,01 и 0,002 % в четыреххлористом углероде; готовят следующим образом: 0,05 г дитизона растворяют в 50 см³ четыреххлористого углерода, переводят в делительную воронку вместимостью 500 см³, приливают 200 см³ воды, 2—3 см³ аммиака и энергично встряхивают в течение 1 мин. Дитизон переходит в водный слой, окрашивая его в оранжевый цвет. После разделения слоев отделяют и отбрасывают слой четыреххлористого углерода. К аммиачному раствору в делительной воронке приливают 100 см³ четыреххлористого углерода, подкисляют соляной кислотой до изменения окраски водного слоя и взбалтывают до обесцвечивания последнего.

Раствор дитизона в четыреххлористом углероде, окрашенный в зеленый цвет, отделяют от водного слоя, промывают два раза водой и фильтруют через сухой бумажный фильтр в сухую склянку из темного стекла, затем приливают 400 см³ четыреххлористого углерода и перемешивают.

Раствор хранят в холодильнике.

Перед анализом проверяют пригодность раствора дитизона, взбалтывают его с раствором разбавленного аммиака. При этом слой четыреххлористого углерода не должен быть окрашен. В противном случае проводят повторную очистку раствора дитизона.

C. 5 FOCT 12697.9-77

Раствор дитизона с массовой долей $0{,}002$ % готовят перед употреблением, разбавляя раствор дитизона с массовой долей $0{,}01$ % в 5 раз четыреххлористым углеродом.

Фенолфталеин по НД, спиртовой раствор с массовой долей 1 %.

Спирт этиловый ректификованный по ГОСТ 18300—87.

Цинк по ГОСТ 3640—94.

Растворы цинка стандартные.

Раствор А; готовят следующим образом: 0,2 г цинка растворяют в 15 см³ 4 моль/дм³ раствора соляной кислоты. Раствор переводят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 0,2 мг цинка (Zn).

Раствор Б; готовят перед употреблением следующим образом: пипеткой отбирают 5 см³ раствора А в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,001 мг цинка (Zn).

(Измененная редакция, Изм. № 3).

- 3.3. Проведение анализа
- 3.3.1. Электрохимическим путем растворяют приблизительно 1 г алюминия в 30 см³ 4 моль/дм³ раствора соляной кислоты. Растворение проводят по ГОСТ 12697.7—77. Полученный раствор выпаривают до начала выпадения солей и растворяют соли в воде при нагревании до получения прозрачного раствора. После охлаждения переводят раствор в мерную колбу вместимостью 100 см³.
 - 3.3.2. Первая экстракция (экстрагирование суммы дитизонатов металлов).

Отбирают 10—50 см³ испытуемого раствора в зависимости от предполагаемой массовой доли цинка в делительную воронку вместимостью 250 см³, разбавляют водой до 50 см³.

Затем добавляют раствор лимоннокислого натрия из расчета 10 см³ раствора на 0,5 г алюминия, 2—3 капли раствора фенолфталеина и раствор аммиака по каплям до получения малиновой окраски. Приливают 10 см³ раствора дитизона с массовой долей 0,01 % и энергично встряхивают содержимое воронки в течение 2 мин. После разделения слоев сливают слой четыреххлористого углерода в другую делительную воронку, не допуская попадания водной фазы в отверстие крана. Экстрагирование дитизонатов повторяют несколько раз порциями дитизона по 5—10 см³ до тех пор, пока последняя порция не перестанет изменять окраски после встряхивания.

Водную фазу промывают встряхиванием с несколькими порциями по 5 см³ четыреххлористого углерода и присоединяют к основному экстракту. Последняя порция четыреххлористого углерода должна быть только слабо окрашена дитизоном.

3.3.3. Реэкстракция (отделение от меди).

К экстракту в делительной воронке добавляют $20 \text{ см}^3 0,02 \text{ моль/дм}^3$ раствора соляной кислоты и энергично встряхивают в течение 1 мин.

Затем сливают слой четыреххлористого углерода в другую делительную воронку. Водный слой не должен попадать в отверстие крана. Повторяют встряхивание органической фазы с 20 см³ 0,02 моль/дм³ раствора соляной кислоты. Слой четыреххлористого углерода отбрасывают.

Объединяют солянокислые растворы и промывают встряхиванием с 10 см³ четыреххлористого углерода. Слой четыреххлористого углерода отделяют и отбрасывают.

3.3.4. Вторая экстракция (извлечение цинка для колориметрирования).

К солянокислому раствору в делительной воронке добавляют 40 см³ раствора 2, 10 см³ раствора дитизона с массовой долей 0,002 % и встряхивают в течение 1 мин. После разделения слоев слой четыреххлористого углерода переводят в кварцевый цилиндр с притертой пробкой, вместимостью 25 см³.

Экстрагирование повторяют еще раз 10 см³ раствора дитизона. Растворенный в водной фазе дитизон извлекают встряхиванием с 5 см³ четыреххлористого углерода и присоединяют к первым двум экстрактам в цилиндре. Раствор дитизона и четыреххлористый углерод добавляют из бюретки.

Для удаления избытка дитизона взбалтывают дитизоновый экстракт с раствором сернистого натрия. Для этого в 2—3 делительные воронки наливают по 10 см³ разбавленного раствора сернистого натрия и в одну из них переносят содержимое цилиндра, которое встряхивают один-два раза. Слой четыреххлористого углерода переносят в следующую воронку. Эту операцию проводят до тех пор, пока водный слой не будет оставаться бесцветным. Затем промывают раствор дитизоната цинка встряхиванием с водой и переносят в цилиндр с притертой пробкой. Раствор дитизоната цинка должен быть

защищен от света. Не позднее чем через 15 мин измеряют оптическую плотность раствора на фотоэлектроколориметре или на спектрофотометре, учитывая, что максимум светопоглощения растворов соответствует длине волны 538 нм. Раствором сравнения служит четыреххлористый углерод.

Для удаления остатков влаги при наполнении кювет растворы пропускают через сухой беззольный фильтр.

Одновременно проводят контрольный опыт. Для этого в кварцевый стакан наливают такое количество соляной кислоты, которое требуется для растворения навески, удаляют кислоту выпариванием до объема 0,5 см³, добавляют 25 см³ воды и проводят анализ, как указано в п. 3.3.

Массу цинка определяют по градуировочному графику, учитывая поправку контрольного опыта.

3.4. Построение градуировочного графика

В делительные воронки вместимостью 250 см³ приливают по 40 см³ 0,02 моль/дм³ раствора соляной кислоты и из микробюретки 0; 0,5; 1; 1,5; 2; 2,5; 3 см3 стандартного раствора Б, что соответствует 0; 0,0005; 0,001; 0,0015; 0,0020; 0,0025; 0,0030 мг цинка.

Прибавляют 40 см³ раствора 2, 10 см³ раствора дитизона с массовой долей 0,002 % и далее проводят анализ, как указано в п. 3.3.4.

Раствором сравнения служит раствор, в который цинк не добавлялся.

По полученным значениям оптических плотностей растворов и известным массам цинка строят градуировочный график.

- 3.3.1—3.4. (Измененная редакция, Изм. № 3).
- 3.5. Обработка результатов
- 3.5.1. Массовую долю цинка (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot V \cdot 100}{V_1 \cdot m_1 \cdot 1000} \; ,$$

где m — масса цинка, найденная по градуировочному графику, мг;

V — общий объем раствора, см³;

 V_1 — объем аликвотной части раствора, см³; m_1 — масса навески алюминия, г.

3.5.2. Допускаемые расхождения результатов параллельных определений (при массовой доле цинка от 0,0002 до 0,003 %) не должны превышать 30 % сходимости и 45 % воспроизводимости.

(Измененная редакция, Изм. № 3).

4. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЦИНКА (при массовой доле цинка от 0,001 до 0,1 %)

4.1. Сущность метода

Метод основан на полярографировании цинка из соответствующим образом подготовленного раствора в интервале напряжения от минус 0,8 до минус 1,2 В.

4.2. Аппаратура, реактивы и растворы

Полярограф переменного тока типа ПУ-1 или аналогичного типа. Весы лабораторные по ГОСТ 24104—88 2-го класса точности с погрешностью взвешивания 0,0002 г.

Азот газообразный по ГОСТ 9293—74.

Алюминий марки А995 по ГОСТ 11069—2001.

Раствор алюминия 28 г/дм3; готовят следующим образом: 14,00 г алюминия помещают в стакан вместимостью 600 см³, растворяют в 300 см³ соляной кислоты, разбавленной 1:1, и добавляют для ускорения растворения одну-две капли металлической ртуги или хлористого никеля. Раствор переводят в мерную колбу вместимостью 500 см³, разбавляют до метки водой и перемешивают.

Бром по ГОСТ 4109—79.

Гидроксиламин солянокислый по ГОСТ 5456—79, свежеприготовленный раствор с массовой долей 10 %.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:1.

Ртуть.

Цинк по ГОСТ 3640—94.

C. 7 FOCT 12697.9-77

Растворы цинка стандартные. Раствор А; готовят следующим образом: растворяют 0,1400 г цинка в 10 см³ соляной кислоты, разбавленной 1 : 1, переводят в мерную колбу вместимостью 1000 см³, разбавляют до метки водой и перемешивают.

1 см³ раствора А содержит 0,14 мг цинка (Zn).

Раствор Б; готовят перед употреблением следующим образом: пипеткой отбирают 25 см³ раствора А в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,014 мг цинка (Zn).

Вся посуда должна быть приготовлена из боросиликатного или соответствующего ему по качеству стекла, не содержащего цинк. Допускается применение полиэтиленовой посуды. Не следует применять резиновые пробки. Вода дважды дистиллированная. Никель хлористый по ГОСТ 4038—79, раствор с массовой долей $0.2\,\%$.

(Измененная редакция, Изм. № 1, 3).

- 4.3. Проведение анализа
- 4.3.1. Навеску алюминия 0,7 г помещают в стакан вместимостью 100—150 см³ и растворяют в 20 см³ соляной кислоты, разбавленной 1 : 1. Стакан накрывают часовым стеклом и нагревают до растворения навески. После растворения обмывают стекло и стенки стакана водой, добавляют 2—3 капли брома и выпаривают раствор до получения влажного остатка солей. Остаток растворяют в небольшом количестве воды и раствор вновь выпаривают до получения влажного остатка солей. Остаток растворяют в 10—15 см³ горячей воды, добавляют 2 см³ раствора солянокислого гидроксиламина, кипятят 1—2 мин. После этого раствор охлаждают, переводят в мерную колбу вместимостью 25 см³, разбавляют до метки водой и перемешивают.

Часть раствора отбирают в электролизер с донной ртутью, пропускают азот в течение 5 мин и полярографируют цинк в интервале напряжения от минус 0,8 до минус 1,2 В при соответствующей чувствительности прибора. Медь и свинец определяют одновременно из того же раствора, полярографируя медь в интервале напряжения от минус 0,05 до минус 0,4 В, а свинец — от минус 0,35 до минус 0,8 В.

Одновременно проводят контрольный опыт.

Массу цинка определяют по градуировочному графику, учитывая поправку контрольного опыта. **(Измененная редакция, Изм. № 3).**

4.3.2. Построение градуировочного графика (при массовой доле иинка от 0.001 до 0.01%)

В стаканы вместимостью 150 см³ помещают по 25 см³ раствора алюминия 28 г/дм³ и из микробюретки добавляют 0; 0,5; 1,0; 2,0; 3,0 и 5,0 см³ раствора Б, которые соответствуют 0; 0,007; 0,014; 0,028; 0,042 и 0,07 мг цинка. В каждый стакан добавляют 2—3 капли брома и выпаривают до получения влажного остатка солей. Затем стенки стакана обмывают водой и вновь выпаривают до влажного остатка солей. Остаток солей растворяют при нагревании в 10-15 см³ воды, приливают 2 см³ раствора солянокислого гидроксиламина и кипятят 1-2 мин. Далее анализ проводят, как указано в п. 4.3.1.

По данным, полученным при полярографировании растворов, и известным массам цинка строят градуировочный график.

При замене капилляра необходимо построить новый график.

(Измененная редакция, Изм. № 1, 3).

4.3.3. Построение градуировочного графика (при массовой доле цинка от 0,01 до 0,1%)

В стаканы вместимостью 150 см^3 помещают по 25 см^3 раствора алюминия 28 г/дм^3 и из микробюретки добавляют 0; 0,5; 1,0; 2,0; 3,0 и 5,0 см 3 раствора A, которые соответствуют 0,07; 0,14; 0,28; 0,42 и 0,70 мг цинка. Далее строят градуировочный график, как указано в п. 4.3.2.

- 4.4. Обработка результатов
- 4.4.1. Массовую долю цинка в процентах (X) вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1 \cdot 1000} ,$$

где m — масса меди, найденная по градуировочному графику, мг;

 m_1 — масса навески алюминия, г.

4.4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 2.

Таблица 2

Массовая доля цинка, %	Допускаемое расхождение, %	
	сходимости, отн.	воспроизводимости, отн.
От 0,001 до 0,003 включ.	30	45
Св. 0,003 » 0,01 »	25	40
» 0,01 » 0,03 »	20	30
» 0,03 » 0,1 »	15	25
» 0,1 » 0,2 »	10	15

(Измененная редакция, Изм. № 1, 3).

5. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЦИНКА (при массовой доле цинка от 0,001 до 0,2 %)

5.1. Сущность метода

Метод основан на растворении пробы в соляной кислоте и распылении полученного раствора в пламени ацетилен-воздух. Используя лампу с полым катодом для цинка, измеряют абсорбцию при длине волны 213,8 нм.

(Измененная редакция, Изм. № 1).

5.2. Аппаратура, реактивы и растворы

Вся посуда должна быть приготовлена из боросиликатного или соответствующего ему по качеству стекла, не содержащего цинк. Допускается применение полиэтиленовой посуды. Не следует применять резиновые пробки.

Спектрофотометр атомно-абсорбционный модели Перкин-Элмер, «Сатурн» или аналогичного типа.

Весы лабораторные по ГОСТ 24104—88 2-го класса точности с погрешностью взвешивания $0.0002~\mathrm{r}$.

Лампа с полым катодом для цинка.

Вода дважды дистиллированная.

Кислота соляная по ГОСТ 3118—77, раствор 1:1.

Кислота серная по ГОСТ 4204-77, раствор 1:1.

Кислота фтористоводородная по ГОСТ 10484—78.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1.

Водорода пероксид по ГОСТ 10929—76 раствор с массовой долей 3 %.

Ацетон по ГОСТ 2603-79.

Ртуть металлическая по ГОСТ 4658—73.

Никель хлористый по ГОСТ 4038—79, раствор с массовой долей 0,2 %.

Цинк по ГОСТ 3640—94.

Алюминий марки А999 по ГОСТ 11069—2001, не содержащий цинка.

Непосредственно перед употреблением стружку очищают в небольшом количестве азотной кислоты.

Очищенную стружку промывают водой и сушат ацетоном.

Раствор алюминия 40 г/дм³: 40,0 г алюминия помещают в стакан вместимостью 1000 см³, небольшими порциями добавляют 500 см³ раствора соляной кислоты 1 : 1 и 250 см³ концентрированной соляной кислоты. Добавляют одну каплю ртути или 1 см³ раствора хлористого никеля для ускорения растворения. Добавляют несколько капель пероксида водорода, затем раствор кипятят несколько минут для удаления избытка пероксида. После охлаждения раствор переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

Стандартные растворы цинка

Раствор А. 1,0 г цинка растворяют в 25 см^3 раствора соляной кислоты 1:1 в стакане вместимостью 400 см^3 , разбавляют водой, переносят в мерную колбу вместимостью 1000 см^3 , добавляют до метки водой и перемешивают. 1 см^3 раствора А содержит 1 см^3 цинка.

6*

С. 9 ГОСТ 12697.9-77

Раствор Б. 100 см³ раствора А переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,1 мг цинка.

Раствор В. 100 см³ раствора Б переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора В содержит 0,01 мг цинка.

(Измененная редакция, Изм. № 1, 3).

- 5.3. Проведение анализа
- $5.3.1.\ 1\ r$ пробы помещают в стакан вместимостью 400 см³, покрывают часовым стеклом и растворяют в $25\ cm^3$ добавляемого небольшими порциями раствора соляной кислоты 1:1, при необходимости раствор нагревают.

Добавляют 2 см³ пероксида водорода, затем нагревают раствор до кипения для удаления избытка пероксида. При массовой доле цинка от 0,001 до 0,05 % раствор переносят в мерную колбу вместимостью 100 см³, после охлаждения доливают до метки водой и перемешивают.

При массовой доле цинка от 0.05 до 0.2 % раствор переносят в мерную колбу вместимостью 500 см^3 , после охлаждения доливают до метки водой и перемешивают. Одновременно с проведением анализа и в тех же условиях приготовляют раствор контрольного опыта, применяя те же реактивы и в тех же количествах, но вместо пробы добавляют 1 г алюминия, не содержащего цинка.

Устанавливают лампу с полым катодом для цинка. Включают прибор и оставляют до его полной стабилизации. Устанавливают прибор на длину волны 213,8 нм и выбирают в соответствии с конструкцией прибора чувствительность и размер щели. Давление газов воздух-ацетилен устанавливают соответственно конструкции прибора. Нуль прибора устанавливают по воде.

В пламя поочередно распыляют растворы для построения градуировочного графика, раствор пробы, раствор контрольного опыта и измеряют абсорбцию.

Из полученных значений абсорбции растворов для построения градуировочного графика вычитают значения абсорбции раствора, не содержащего цинк, и по полученным значениям абсорбции и известным массам цинка строят градуировочный график.

(Измененная редакция, Изм. № 1, 3).

- 5.3.2. При массовой доле цинка от 0,001 до 0,05 % в 11 мерных колб вместимостью по 100 см³ помещают по 25 см³ раствора алюминия, затем из бюретки поочередно добавляют 1,0; 2,0; 4,0; 6,0; 8,0; 10,0 см³ раствора В и 2,0; 3,0; 4,0; 5,0 см³ раствора Б, что соответствует 0,01; 0,02; 0,04; 0,06; 0,08; 0,10; 0,20; 0,30; 0,40; 0,50 мг цинка. В одиннадцатую колбу раствор цинка не добавляют. Растворы доливают до метки водой и перемешивают.
- 5.3.3. При массовой доле цинка от 0,05 до 0,2 % в смесь мерных колб вместимостью по 100 см³ помещают по 5 см³ раствора алюминия, затем из бюретки поочередно добавляют 5,0; 8,0; 10,0; 12,0; 15,0; 20,0 см³ раствора Б, что соответствует 0,5; 0,8; 1,0; 1,2; 1,5; 2,0 мг цинка. В седьмую колбу раствор Б не добавляют. Растворы доливают до метки водой и перемешивают.
 - 5.4. Обработка результатов
 - 5.4.1. Массовую долю цинка в процентах (X) вычисляют по формуле

$$X = \frac{m \cdot V \cdot 100}{m_1 \cdot V_1 \cdot 1000} ,$$

где m — масса цинка в растворе пробы, найденная по градуировочному графику, мг;

 V_1 — объем раствора для построения графика, см³;

V — объем раствора пробы, см³;

 m_1 — масса навески пробы, г.

5.3.2—5.4.1. (Измененная редакция, Изм. № 1).

5.4.2. Допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 3.

ГОСТ 12697.9—77 С. 10

Таблица 3

Массовая доля цинка, %	Допускаемое расхождение, %	
	сходимости, отн.	воспроизводимости, отн.
От 0,001 до 0,003 включ.	30	45
Св. 0,003 » 0,01 »	25	40
» 0,01 » 0,03 »	20	30
» 0,03 » 0,1 »	15	25
» 0,1 » 0,2 »	10	15

(Измененная редакция, Изм. № 1, 3).