ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Метод определения калия

ГОСТ 11739.8—90

Aluminium casting and wrought alloys. Method for determination of potassium

ОКСТУ 1709

Срок действия с 01.07.91 до 01.07.96

Настоящий стандарт устанавливает пламенно-фотометрический метод определения калия при массовой доле от 0,001 до 0,05%.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методу анализа по ГОСТ 25086 с дополнением.
- 1.1.1. За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

2. СУЩНОСТЬ МЕТОДА

Метод основан на растворении пробы в соляной кислоте и последующем измерении интенсивности излучения калия при длине волны 766,5 нм в пламени ацетилен-воздух.

3. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Фотометр пламенный или спектрофотометр атомно-абсорбционный, работающий в режиме эмиссии.

Шкаф сушильный с терморегулятором.

Кварцевый аппарат для перегонки.

Кварцевые колбы.

Вода, дважды перегнанная в кварцевом аппарате (тридистиллят для приготовления растворов и проведения анализа); хранят в полиэтиленовой посуде.

Издание официальное

Перепечатка воспрещена

Ацетилен по ГОСТ 5457, очищенный серной кислотой. Кислота серная по ГОСТ 4204, плотностью 1,84 г/см³.

Кислота соляная по ГОСТ 14261 или по ГОСТ 3118, перегнанная в кварцевом аппарате, плотностью 1,19 г/см³, растворы 1:1 и 1:99.

Кислота фтористоводородная по ГОСТ 10484.

Водорода пероксид по ГОСТ 10929.

Никель хлористый по ГОСТ 4038, раствор 2 г/дм³.

Алюминий по ГОСТ 11069 марки А999.

Раствор алюминия 50 г/дм³: 25 г алюминия помещают в кварцевую колбу вместимостью 600 см³, добавляют 50 см³ воды, а затем небольшими порциями 400 см³ раствора соляной кислоты (1:1), растворяют при нагревании, добавляя 1 см³ раствора хлористого никеля. Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают. Раствор хранят в полиэтиленовой посуде. Калий хлористый по ГОСТ 4234.

Стандартные растворы калия

Раствор А: 1,782 г хлористого калия, предварительно высушенного при температуре 105—110°С, растворяют в 50 см³ воды, переводят раствор в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см³ раствора А содержит 0,001 г калия.

Раствор Б: 10 см³ стандартного раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см3 раствора Б содержит 0,0001 г калия.

Раствор В: 10 см³ стандартного раствора Б переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см³ раствора В содержит 0,00001 г калия.

Растворы Б и В готовят непосредственно перед применением.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Навеску пробы массой 1 г помещают в коническую кварцевую колбу вместимостью 250 см3, снабженную обратным кварцевым холодильником, добавляют порциями 20 см3 раствора соляной кислоты 1:1 и умеренно нагревают до окончания растворения. Добавляют 3—5 капель пероксида водорода и кипятят в течение 3 мин. Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

4.2. При массовой доле кремния свыше 1% после растворения по п. 4.1 раствор фильтруют через фильтр средней плотности («белая лента») в мерную колбу вместимостью 100 см³. Осадок на фильтре промывают 3—4 раза горячим раствором соляной кислоты (1:99) порциями по 10 см³ (основной фильтрат).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °С в течение 3 мин. После охлаждения к содержимому тигля добавляют четыре капли серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту до получения прозрачного раствора. Далее раствор упаривают досуха, после охлаждения остаток смачивают 2—3 см³ воды и растворяют в 2—3 см³ раствора соляной кислоты (1:1) при нагревании.

Раствор присоединяют к основному фильтрату в мерной колбе вместимостью 100 см³, доливают водой до метки и перемешивают.

- 4.3. Раствор контрольного опыта готовят согласно пп. 4.1 и 4.2 не менее чем в двух параллельных со всеми реактивами, используемыми в анализе.
 - 4.4. Построение градуировочных графиков
- 4.4.1. При массовой доле калия от 0,001 до 0,005% в семь мерных колб вместимостью по 100 см³ помещают по 20 см³ раствора алюминия, в пять из них отмеряют 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора В, что соответствует 0,00001; 0,00002; 0,00003; 0,00004; 0,00005 г калия.
- 4.4.2. При массовой доле калия свыше 0,005 до 0,05% в восемь мерных колб вместимостью по 100 см³ помещают по 20 см³ раствора алюминия, в шесть из них отмеряют 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора 0,00005; 0,0005; 0,
- 4.4.3. Растворы в колбах по пп. 4.4.1 и 4.4.2 доливают до метки водой и перемешивают.

Растворы, не содержащие калия, служат растворами контрольного опыта при построении градуировочных графиков.

4.5. Раствор пробы, растворы контрольного опыта и растворы для построения градуировочных графиков распыляют в пламя ацетилен-воздух и измеряют интенсивность излучения калия при длине волны 766.5 нм.

По полученным значениям интенсивности излучения и соответствующим им массовым концентрациям калия строят градуировочный график.

Массовую концентрацию калия в растворе пробы и растворе контрольного опыта определяют по градуировочному графику.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Массовую долю калия (X) в процентах вычисляют по формуле

 $X = \frac{(C_1 - C_2) \cdot V}{m} \cdot 100,$

C. 4 FOCT 11739.8-90

- где C_1 массовая концентрация калия в растворе пробы, найденная по градуировочному графику, г/см³;
 - C_2 массовая концентрация калия в растворе контрольного опыта, найденная по градуировочному графику, г/см³;
 - V объем раствора пробы, см³;
 - т масса навески пробы, г.
- 5.2. Расхождения результатов не должны превышать значений, приведенных в таблице.

		Абсолютное допускаемое расхождение, %	
	Массовая доля калия, %	результатов парал- лельных определений	результатов анализа
От	0,0010 до 0,0020 включ.	0,0004	0,0005
CB.	0,0020 > 0,0050 >	0.0008	0.0010
>	0,005 > 0,010 >	0,001	0,002
>	0,010 > 0,025 >	0,003	0,004
>	0,025 > 0,050 >	1 0,005	0, 00 6

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством авиационной промышленности СССР

РАЗРАБОТЧИКИ

- В. Г. Давыдов, д-р техн. наук; В. А. Мошкин, канд. техн. наук; Г. И. Фридман, канд. техн. наук; М. Н. Горлова, канд. хим. наук; В. А. Осипова, канд. хим. наук
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 28.06.90 № 1961
- 3. Периодичность проверки 5 лет
- 4. B3AMEH ΓΟCT 11739.8—78
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, раздела	Обозначение НТД, на который дана ссылка	Номер пункта, раздела
FOCT 3118—77	3	FOCT 10484—78	3
FOCT 4038—79	3	FOCT 10929—76	3
FOCT 4204—77	3	FOCT 11069—74	3
FOCT 4234—77	3	FOCT 14261—77	3
FOCT 5457—75	3	FOCT 25086—87	1.1