РЕАКТИВЫ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРИМЕСИ НИТРАТОВ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

РЕАКТИВЫ

Методы определения примеси нитратов

ГОСТ 10671.2—74

Reagents. Methods for determination of nitrates

МКС 71.040.30 ОКСТУ 2609

Дата введения 01.07.75

Настоящий стандарт распространяется на химические реактивы и устанавливает методы определения примеси нитратов; визуальный метод с применением индигокармина (метод 1); фотометрический метод с применением салициловокислого натрия (метод 2).

(Измененная редакция, Изм. № 1, 2).

- 1а. Общие указания
- 1а.1. Общие указания и требования к методам анализа по ГОСТ 27025 и ГОСТ 10671.0.

При взвешивании применяют лабораторные весы 2-го класса точности с наибольшим пределом взвешивания 200 г и ценой деления 0,1 мг, 3-го класса точности с наибольшим пределом взвешивания 500 г или 1 кг и ценой деления 10 мг или 4-го класса точности с наибольшим пределом взвешивания 200 г и ценой деления 1 мг.

Допускается применение импортной лабораторной посуды и аппаратуры по классу точности и реактивов по качеству не ниже отечественных.

- 1а.2. Масса навески анализируемого реактива, проведение предварительной обработки навески, масса нитратов в растворах сравнения, соответствующая норме, должны быть указаны в нормативно-технической документации на анализируемый реактив.
 - 1а.1, 1а.2. (Измененная редакция, Изм. № 2).
 - 1а.3. Масса нитратов в навеске анализируемого реактива должна быть в пределах:
 - 0,005-0,030 мг при определении методом 1;
 - 0.005-0.050 мг при определении методом 2.
- 1а.4. Применяемый метод и необходимые условия определения должны быть предусмотрены в нормативно-технической документации на анализируемый реактив.
 - 1а.3, 1а.4. (Измененная редакция, Изм. № 1, 2).
- 1а.5. При взвешивании навески анализируемого реактива и навесок реактивов для приготовления растворов, применяемых для анализа, результат взвешивания в граммах записывают с точностью до второго десятичного знака.

(Измененная редакция, Изм. № 2).

- 1а.6. (Исключен, Изм. № 2).
- 1а.7. Если при растворении или разложении навески анализируемого реактива применяют реактивы, в состав которых входит примесь нитратов, то вводят поправку, устанавливаемую контрольным опытом.

(Измененная редакция, Изм. № 1, 2).

1а.8. При хранении растворов реактивов (если нет указаний об ограничении сроков хранения их) в случае помутнения, образования хлопьев или осадка раствор заменяют свежеприготовленным.

(Введен дополнительно, Изм. № 1).

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1974 © Стандартинформ, 2007 1а.9. Определение примеси нитратов необходимо проводить в помещении, изолированном от помещений, в которых работают с кислотами и легколетучими солями, содержащими нитраты.

(Измененная редакция, Изм. № 1, 2).

1. МЕТОД С ПРИМЕНЕНИЕМ ИНДИГОКАРМИНА (МЕТОД 1)

Метод основан на способности раствора индигокармина обесцвечиваться нитрат-ионами в сернокислой среде. Окраску анализируемого раствора сравнивают визуально с окраской раствора сравнения, содержащего определенную массу нитрат-ионов.

(Измененная редакция, Изм. № 2).

1.1. Аппаратура, реактивы и растворы

Бюретка 1(2)—2—50—0,1 по ГОСТ 29251;

колба 2—1000—2 по ГОСТ 1770;

колбы Кн-2-750-40 ТХС, Кн-2-50(100)-22 ТХС по ГОСТ 25336;

пипетки 4(5)—2—1(2), 6(7)—2—5(10) по ГОСТ 29227;

цилиндр 1(3)—50, 1—1000 по ГОСТ 1770;

вода дистиллированная по ГОСТ 6709;

индигокармин (индигосульфонат натрия) с установленным содержанием основного вещества, которое определяют следующим образом: около 0,2500 г индигокармина помещают в коническую колбу вместимостью 750 см³, растворяют в 30 см³ воды, прибавляют 1 см³ концентрированной серной кислоты, перемешивают до полного растворения индигокармина, доводят объем раствора водой до 600 см³ и титруют раствором марганцовокислого калия до перехода зеленой окраски раствора в коричнево-желтую (1 см³ раствора марганцовокислого калия концентрации точно 0,1 моль/дм³ соответствует 0,01165 г индигокармина).

Раствор индигокармина готовят следующим образом:

0,20 г индигокармина (при массовой доле основного вещества менее 95 % массу навески инди-

гокармина (*m*) в граммах вычисляют по формуле $m = 0.20 \, \frac{100}{X}$, где X — фактическая массовая доля индигокармина, %) растворяют в 500 см³ раствора серной кислоты в мерной колбе, прибавляют $20 \, \text{см}^3$ соляной кислоты и доводят объем раствора до метки раствором серной кислоты.

Раствор индигокармина хранят в темном месте: пригодность раствора проверяют через каждые 14 дней (описание проверки пригодности — по п. 1.2);

калий марганцовокислый по ГОСТ 20490, раствор концентрации c (1/5 KMnO₄) = 0.1 моль/дм³ (0.1 н.); готовят по ГОСТ 25794.2;

кислота серная по ГОСТ 4204, концентрированная и раствор с массовой долей 16 %; готовят по ГОСТ 4517;

кислота соляная по ГОСТ 3118;

натрий хлористый по ГОСТ 4233, раствор с массовой долей 5%;

раствор, содержащий NO_3 ; готовят по ГОСТ 4212. Соответствующим разбавлением готовят раствор, содержащий 0.01 мг NO_3 в 1 дм³. Разбавленный раствор применяют свежеприготовленным.

1.2. Проверка пригодности раствора индигокармина

В две конические колбы вместимостью 50 или 100 см^3 каждая помещают растворы, содержащие 0,030 и 0,035 мг NO_3 , доводят объемы растворов водой до 10 см^3 , прибавляют при перемешивании 1 см^3 раствора хлористого натрия, 1 см^3 раствора индигокармина, 12 см^3 концентрированной серной кислоты и оставляют в покое на 5 мин.

Голубая окраска раствора, содержащего $0.030~{\rm Mr~NO_3}$, должна быть темнее раствора, содержащего $0.035~{\rm Mr~NO_3}$.

1.3. Проведение испытания

Навеску анализируемого реактива помещают в коническую колбу вместимостью 50-100 см³ и растворяют в 10 см³ воды. К раствору прибавляют при перемешивании 1 см³ раствора хлористого натрия, 1 см³ раствора индигокармина и 12 см³ концентрированной серной кислоты.

Наблюдаемая через 5 мин окраска анализируемого раствора не должна быть слабее окраски раствора сравнения, приготовленного одновременно с анализируемым таким же образом и содержащего в таком же объеме: массу нитратов в миллиграммах, указанную в нормативно-технической

документации на анализируемый реактив, 1 см³ раствора хлористого натрия, 1 см³ раствора индигокармина и 12 см³ концентрированной серной кислоты.

1.1—1.3. (Измененная редакция, Изм. № 1, 2).

2. МЕТОД ОПРЕДЕЛЕНИЯ С ПРИМЕНЕНИЕМ САЛИЦИЛОВОКИСЛОГО НАТРИЯ (метод 2)

Метод основан на реакции нитрования салициловокислого натрия в сернокислой среде. Образующееся нитросоединение приобретает в щелочной среде желтую окраску, интенсивность которой определяют фотометрически. Для разрушения мешающей определению примеси ${
m NO}_2$ применяют карбамид.

(Измененная редакция, Изм. № 2).

2.1. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр любого типа;

колба 2—50—2 по ГОСТ 1770;

колба Kн-2—250—34 ТХС или стакан B-1—250 ТХС по ГОСТ 25336;

пипетки 4(5)-2-1, 6(7)-2-5(10), 6(7)-2-25 или 2(3)-2-25 по ГОСТ 29227;

цилиндр 1(3)—50 по ГОСТ 1770;

вода дистиллированная по ГОСТ 6709;

аммиак водный по ГОСТ 3760;

кислота серная по ГОСТ 4204;

карбамид по ГОСТ 6691, раствор с массовой долей 20 %;

натрий салициловокислый, ч.д.а. или фармакопейный, раствор с массовой долей 10 %;

натрия гидроокись по ГОСТ 4328, раствор с массовой долей 20 %; готовят по ГОСТ 4517;

раствор, содержащий NO_3 , готовят по ГОСТ 4212, соответствующим разбавлением его готовят раствор, содержащий $0.1~\rm{mr}~NO_3~\rm{B}~1~\rm{cm}^3$.

2.2. Построение градуировочного графика

Готовят растворы сравнения. Для этого в сухие мерные колбы помещают растворы, содержащие 0,005; 0,010; 0,020; 0,030; 0,040 и 0,050 мг NO_3 , доводят объемы растворов водой до 0,75 см³ и перемешивают.

Одновременно готовят контрольный раствор, не содержащий NO₃.

В каждый раствор прибавляют 0.5 см^3 раствора карбамида, 0.25 см^3 раствора салициловокислого натрия и осторожно, при перемешивании — 3 см^3 серной кислоты. Растворы выдерживают в течение 5 мин, не охлаждая, затем осторожно, при перемешивании, прибавляют 20 см^3 воды и 20 см^3 раствора гидроокиси натрия охлаждают, доводят объем растворов водой до метки и перемешивают.

Оптическую плотность растворов сравнения измеряют по отношению к контрольному раствору на спектрофотометре при длине волны 415 нм или фотоэлектроколориметре при длине волны 400—420 нм в кюветах с толщиной поглощающего свет слоя 50 мм.

По полученным данным строят градуировочный график.

2.1, 2.2. (Измененная редакция, Изм. № 1, 2).

2.3. Проведение испытания

Навеску анализируемого реактива (не более 1,00 г) помещают в сухую мерную колбу, смачивают 0,75 см 3 воды, прибавляют 0,5 см 3 раствора карбамида, 0,25 см 3 раствора салициловокислого натрия и осторожно, при перемешивании — 3 см 3 серной кислоты. Раствор выдерживают в течение 5 мин, не охлаждая, осторожно при перемешивании прибавляют 20 см 3 воды, 20 см 3 раствора гидроокиси натрия охлаждают, доводят объем раствора водой до метки и перемешивают.

Оптическую плотность анализируемого раствора измеряют по отношению к контрольному раствору, приготовленному так же, как при построении градуировочного графика. По полученному значению оптической плотности, пользуясь графиком, находят массу NO_3 в анализируемом реактиве.

Окраска устойчива в течение суток.

2.4. За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает допускаемое расхождение (d), указанное в таблице.

Допускаемые относительные суммарные погрешности результатов анализа (Δ) при доверительной вероятности P=0,95 приведены в таблице.

Найденная масса нитратов, мг	<i>d</i> , мг	Δ, %
От 0,005 до 0,010 включ.	0,003	±35
Св. 0,010 » 0,020 »	0,003	±15
» 0,020 » 0,030 »	0,003	±10
» 0,030 » 0,050 »	0,006	±10

- 2.3, 2.4. (Измененная редакция, Изм. № 2).
- 2.5. (Исключен, Изм. № 2).
- 2.6. Если анализируемый реактив имеет щелочную реакцию или разлагается серной кислотой, то количество последней для проведения реакции нитрования увеличивают и соответственно увеличивают количество раствора гидроокиси натрия, что должно быть указано в нормативно-технической документации на анализируемый реактив.
- 2.7. Если анализируемый реактив имеет плохую растворимость в воде, то реакцию нитрования проводят в конической колбе или стакане в следующих условиях: к навеске анализируемого препарата (не более 2 г) прибавляют 4 см 3 воды, 0,5 см 3 раствора карбамида, 0,5 см 3 раствора салициловокислого натрия и 7 см 3 серной кислоты. Через 5 мин объем раствора доводят водой до 100 см 3 . 25 см 3 полученного раствора (соответствуют $^1/_4$ части первоначальной навески препарата) помещают пипеткой в мерную колбу, прибавляют 13 см 3 раствора гидроокиси натрия, объем раствора доводят водой до метки и фотометрируют. Градуировочный график строят в таких же условиях, с тем расчетом, чтобы в 25 см 3 аликвотной части раствора содержалось 0,01—0,05 мг NO $_3$.
- 2.8. Если анализируемый раствор мутный или в нем наблюдается опалесценция, в результат определения вводят поправку, для чего измеряют в условиях определения оптическую плотность раствора навески анализируемого реактива (из которой проводилось определение) в 50 см³ воды. Оптическую плотность измеряют по отношению к воде и полученную величину вычитают из оптической плотности анализируемого раствора.
- 2.9. В случае невозможности проведения окончания определения в среде раствора гидроокиси натрия допускается заканчивать определение в аммиачной среде, о чем должно быть указано в нормативно-технической документации на анализируемый реактив. Аммиак следует прибавлять в избытке, равном 10 см³ раствора аммиака сверх объема, необходимого для нейтрализации серной кислоты. Градуировочный график в этом случае строят в таких же условиях.

При окончании определения в аммиачной среде, при необходимости, в результат анализа вводят поправку на оптическую плотность раствора сравнения, содержащего примесь железа в количествах, найденных в навеске анализируемого реактива. Определение проводят в условиях методики определения нитратов. Полученное значение оптической плотности вычитают из оптической плотности анализируемого раствора.

- 2.10. При определении нитратов в солях амфотерных металлов объема раствора гидроокиси натрия увеличивают: прибавляют раствор гидроокиси натрия до растворения выпадающего вначале осалка.
 - 2.7—2.10. (Измененная редакция, Изм. № 2).

ПРИЛОЖЕНИЕ. (Исключено, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 05.08.74 № 1885
- 3. ВЗАМЕН ГОСТ 10671—63 в части разд. IV
- 4. В стандарт введен СТ СЭВ 1434-78

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ΓΟCT 1770—74 ΓΟCT 3118—77 ΓΟCT 3760—79 ΓΟCT 4204—77 ΓΟCT 4212—76 ΓΟCT 4233—77 ΓΟCT 4328—77 ΓΟCT 4517—87	1.1, 2.1 1.1 2.1 1.1, 2.1 1.1, 2.1 1.1 2.1 1.1, 2.1	FOCT 6691—77 FOCT 6709—72 FOCT 10671.0—74 FOCT 20490—75 FOCT 25336—82 FOCT 25794.2—83 FOCT 27025—86 FOCT 29227—91 FOCT 29251—91	2.1 1.1, 2.1 1a.1 1.1 1.1, 2.1 1.1 1a.1 1.1, 2.1 1.1

- 6. Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 7. ИЗДАНИЕ (февраль 2007 г.) с Изменениями № 1, 2, утвержденными в декабре 1979 г., июне 1989 г. (ИУС 1—80, 11—89)

Редактор Л.В. Коретникова
Технический редактор Л.А. Гусева
Корректор Н.И. Гаврищук
Компьютерная верстка И.А. Налейкиной

Подписано в печать 14.03.2007. Формат 60 х $84^{1}/_{8}$. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ.л. 0,93. Уч.-изд.л. 0,55. Тираж 159 экз. Зак. 206. С 3786.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru info@gostinfo.ru Hабрано в Калужской типографии стандартов.
Отпечатано в филиале ФГУП «Стандартинформ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.