Корпорация «Трансстрой»

CTII 015-2001

Технология устройства упоров в виде круглых стержней с головкой из импортных материалез в конструкциях мостов

СТАНДАРТ ПРЕДПРИЯТИЯ

Технология устройства упоров в виде круглых стержней с головкой из импортных материалов в конструкциях мостов

CTII 015-2001

КОРПОРАЦИЯ «ТРАНССТРОЙ» МОСКВА

ПРЕДИСЛОВИЕ

1. РАЗРАБОТАН Корпорацией «Трансстрой», Научно-технической ассоциацией ученых и специалистов транспортного строительства, Научно-исследовательским институтом мостов и дефектоскопии (НИИ мостов) МПС РФ (к.т.н. Агеев В С., инж. Морозов С.В.) и ОАО «Гипротрансмост» (инж. Гитман Э.М.).

При разработке СТП использован опыт практического применения «упоров» при изготовлении на заводах ОАО «Мостостройиндустрия», а также опыт работ ОАО «Мостотрест» по сварке «упоров» в условиях монтажа.

- 2. ВНЕСЕН Научно-техническим управлением Корпорации «Трансстрой».
- 3. СОГЛАСОВАН УС «Мостострой» (№ 21-1-K-1 от 27.06.2001 г.).

УП «Транспроект» (№ 12-01-05/444 от 07.02.2001 г.),

ОАО «Мостостройиндустрия» (№ 5052-129 от 02.11.2001 г.),

ОАО «Мостотрест» (№ 5021-2/40 от 21.06.2001 г.),

ОАО ЦНИИС (№ 530101/71 от 14.08.2001 г.).

- 4. ВВЕДЕН впервые.
- ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ с 1 декабря 2001г. Корпорацией «Трансстрой» распоряжением от 19 декабря 2001г. № ПН-124.

© Корпорация «Трансстрой», 2001 г.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Корпорации «Трансстрой».

СОДЕРЖАНИЕ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ	1
2. ОБЩИЕ ПОЛОЖЕНИЯ	1
3. РАСХОДНЫЕ МАТЕРИАЛЫ	3
4. СВАРОЧНОЕ ОБОРУДОВАНИЕ	7
5. ПРИВАРКА «УПОРОВ»	10
6. КОНТРОЛЬ КАЧЕСТВА	14
Испытания технологических проб	17
Входной конгроль	18
Рабочий контроль	19
Операционный контроль	20
Приемочный контроль	21
7. РЕМОНТ СВАРНЫХ СОЕДИНЕНИЙ «УПОРОВ»	23
приложения:	
Приложение A (справочное) Характерные дефекты, причины их образования и способы устранения	23
Приложение Б (обязательное) Испытание технологических проб	26
Приложение В (обязательное) Форма рабочего журнала ультразвукового контроля сварных соединений «упоров»	31

СТАНДАРТ ПРЕДПРИЯТИЯ

Технология устройства упоров в виде круглых Введён впервые стержней с головкой из импортных материалов в конструкциях мостов

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Стандарт предприятия регламентирует процесс выполнения сварных соединений гибких упоров в виде круглых стержней с головкой (далее «упоров») в конструкциях сталежелезобетонных пролётных строений мостов.
- 1.2. Стандарт предприятия распространяется на сварные соединения «упоров», выполненные контактно-дуговой сваркой специализированным сварочным оборудованием с применением защитных огнеупорных керамических колец.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. «Упоры» применяют для объединения железобетонных элементов со стальными конструкциями с целью восприятия усилий сдвига при действии статических и динамических нагрузок в автодорожных и пешеходных мостах. В железнодорожных и совмещенных мостах «упоры» допускается применять по согласованию с МПС РФ.

Сварные соединения «упоров» получают разогревом рабочего конца стержня под защигой керамического кольца сварочной дугой до температуры плавления и его осадкой в сварочную ванну для сплавления с основным металлом конструкции. Расплавленный металл стержня формирует сварной шов и определяет механические характеристики металла шва. Для возбуждения дуги и раскисления металла шва в процессе сварки переплавляемый торец «упора» оснащен ионизирующим наконечником.

Керамическое огнеупорное кольцо снижает потерю тепла и скорость охлаждения сварочной ванны, обеспечивает защиту расплавленного металла шва в сварочной ванне от окружающей среды за счет медленного отвода газов и формирует вытесняемый металл в виде кольцевого валика шва. Форма, размеры н количество газоотводящих отверстий определяются условиями обеспечения необходимой суммарной площади отверстий для отвода газов и качественного формирования кольцевого валика шва. Керамическое кольцо не плавится в процессе сварки и не вступает в металлургическую реакцию с металлом шва. Керамическое кольцо используют только один раз и удаляют после затвердевания расплавленного мегалла.

2.2. Стандарт предприятия устанавливает требования к материалам «упоров» и керамических колец (далее — расходных материалов); регламентирует вопросы подготовки, сборки, сварки, контроля качества и приёмки сварных соединений, выполненных в заводских и монтажных условиях с использованием зарубежных расходных материалов и оборудования.

Стандарт предприятия разработан в соответствии с международными стандартами ISO 14555 «Сварка. Дуговая приварка металлических шпилек» и ISO 13918 «Сварка. Шпильки и керамические кольца для приварки шпилек».

- На Стандарт предприятия следует ссылаться при разработке проектной документации, заключении договоров на изготовление конструкций и заказ расходных материалов.
- 2.3. Приварку «упоров» следует производить к элементам мостовых конструкций в обычном исполнении из сталей 10ХСПД и 15ХСНД 1-3 категории по ГОСТ 6713-

91, а также из сталей 10ХСНДА и 15ХСНДА 2-3 категории 1-2 классов по ТУ 14-1-5120-92.

2.4. Количество, типоразмер (диаметр и полная длина «упора») и размещение «упоров» в конструкции следует указывать в чертежах КМ.

Во избежание прожогов не допускается приваривать «упоры» к прокату, толща на которого меньше ¼ диаметра «упора».

2.5. Приварку «упоров» при изготовлении конструкций следует выполнять в готовых элементах, а на монтаже, как правило, – в элементах до подачи их на монтаж. При изготовлении элементов рекомендуется учитывать возникающие при сварке «упоров» общие сварочные деформации.

Приварку «упоров» следует выполнять в нижнем положении.

К стыковым монтажным накладкам и сварным монтажным вставкам с целью предотвращения сварочных деформаций и удобства монтажа «упоры» приваривают после сборки и сварки монтажного стыка. В этом случае приварку «упоров» на монтаже следует выполнять специализированным сварочным оборудованием. Допускается приварку «упоров» на монтажных накладках и вставках осуществлять ручной дуговой сваркой по разделу 7 настоящего Стандарта. При этом для приваренных ручной дуговой сваркой «упоров» коэффициент условия работы следует принимать равным m=0,5

2.6. Техническое руководство сварочными работами должны осуществлять инженерно-технические работники, прошедшие подготовку по технологии выполнения работ по сварке «упоров».

Приварку «упоров» выполняют сварщики не моложе 18 лет, прошедшие обучение по пользованию специализированным сварочным оборудованием, заварившие контрольные образцы, сдавшие теоретический экзамен и допущенные к сварочным работам в установленном порядке.

Подготовка и аттестация специалистов и рабочих осуществляется в порядке, предусмотренном действующей нормативной документацией.

Инженерно-технические работники и рабочий персонал, привлекаемые к сварке «упоров», должны знать:

- правила установки, подключения сварочного эгрегата и настройки параметров режима сварки;
- влияние параметров режима сварки (сила тока, время сварки, подъём и осадка «упора» и т.п.) на качество сварного соединения;
- основные требования по приварке «упоров» (подготовку материалов и конструкций, последовательность операций, правила подключения кабелей, способы предотвращения магнитного «дутья» и т.д.);
- требования к качеству расходных материалов, сварных соединений и правила проведения визуально-измерительного контроля и механических испытаний;
- правила техники безопасности.
- 2.7. Сварные соединения «упоров», выполненные при заводском изготовлении или на монтаже, подлежат обязательной приемке ОТК завода-изготовителя конструкций или строительной организации, а также службами технического надзора Заказчика или независимой контролирующей организацией.

К выполнению ультразвукового контроля сварных соединений «упоров» допускаются дефектоскописты, сертифицированные на 1-й и 2-й уровни квалификации по ГОСТ 30489 в системе ССПНК (рег. № РОСС RU,0001.04A00) и изучившие технологические инструкции по ультразвуковому контролю.

К выполнению визуально-измерительного контроля допускаются инженернотехнические работники и контролеры ОТК, сертифицированные на 1-й и 2-й уровни квалификации по визуально-измерительному контролю в строительстве по ГОСТ 30489 п системе ССПНК (рег. № РОСС RU.0001.04.A00) и допущенные в установленном порядке к руководству работами по сварке «упоров».

3. РАСХОДНЫЕ МАТЕРИАЛЫ

«Упоры» в виде круглых стержней с головкой

3.1. В конструкциях мостов следует использовать стальные «упоры» типа SD-А по ISO 13918 (или ККВ по DIN 32500-3) с плоским рабочим (переплавляемым) торцом, оснащённым алюминиевым наконечником. Применение «упоров» с иной конструкцией рабочего торца не допускается.

Для установки пьезоэлектрического преобразователя при проведении ультразвукового контроля в центральной части на торце головки «упора» должна быть предусмотрена свободная от маркировки площадка.

3.2. В проектной, технической и договорной документации указывают марку «упора», диаметр рабочего торца «упора» и его полную длину (от верхней плоскости головки до торца стержня - см. Рис. 3.1, размер L).

Марку и типоразмер «упоров» в виде круглых стержней с головкой принимают по стандарту ISO 13918 или национальному стандарту страны-производителя поставляемой партии «упоров».

Пример обозначения:

SD-A - 22/200 ISO 13918

или – «упор» круглый с головкой диаметром 22 мм длиной **ККВ - 22/200 DIN32000-3** 200 мм,

Номенклатура типоразмеров «упоров» зарубежного производства, разрешенных для применения в мостостроении, приведена в табл. 3.1.

Таблина 3.1

Длина «упора»,	Вес, кг, 100 «упоров» при диаметре, мм		
MM	19	22	25
100	27	35	47
125	33	43	57
150	38	50	66
175	44	58	76
200	49	65	85
225	55	73	95
250	60	80	105

Примечание: В таблице выделены типоразмеры «упоров», рекомендованные для применения в мостостроении в качестве основных.

3.3. Для применения в мосгостроении рекомендуются «упоры» из стали S235J2G3+C450 (St37-3k), изготавливаемые и поставляемые фирмой «KÖCO» (Германия).

Содержание химических элементов в стали «упора» должно соответствовать значениям, указанным в табл. 3.2.

Таблица 3.2

Массовая доля содержания элемента, %						
Углерод	Углерод Кремний Маргансц Сера Фосфор Алюминий					
≤ 0.18						

Материал «упоров» по механическим характеристикам должен отвечать следующим требованиям:

- предел текучести не менее 350 МПа;
- временное сопротивление не менее 450 МПа;
- ударная вязкость основного металла не менее КСU₋₄₀ ≥ 30 Дж/см², КСV₋₂₀ ≥ 27 Дж/см²;
- относительное удлинение не менее 16 %.

При заказе «упоров» следует указывать полное обозначение марки стали, включающее характеристику механических свойств - \$235J2G3+C450 (\$t37-3k).

3.4. Основные размеры допускаемых к применению в мостостроении «упоров» и пропорции их частей должны соответствовать значениям, указанным на рис. 3.1 и в табл 3.3

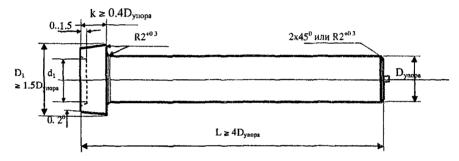


Рис. 3.1. Основные размеры допускаемых к применению в мостостроении «упоров»

Таблица 3.3

Показатель	Допуск, мм	Размеры основных частей при диаметре «упора»,		
l	_	MM		
D	+0.2, -0.4	19	22	25
D_1	+0.3, -0.3	32	35	40
k	+0.5, -0.5	10	10	12
d_1	+1.0, -0.2	15	15	15

Примечание. В таблице выделены значения показателей, рекомендованные для применения в мостостроении в качестве основных.

3.5. «Упоры» поставляют партиями. Партия должна состоять из изделий одного типоразмера, изготовленных из металла одной плавки Размер партии устанавливает фирма-изготовитель «упоров».

Каждая партия должна сопровождаться сертификатом, в котором должны быть указаны:

- номер и дата оформления сертификата;
- фирма (завод) изготовитель;
- наименование, типоразмер и маркировка изделия;
- номер партии «упоров»;

- марка стали, химический состав и механические характеристики в объеме требований п. 3.3 настоящего стандарта,
- количество «упоров» в партии и вес партии.
- 3.6. Использование партий «упоров», не имеющих сертификата фирмыизготовителя, не допускается.

При отсутствии в сертификате на «упоры» данных по содержанию отдельных элементов (C, Si, Mn, S, P) в химпческом составе или отдельных показателей механических характеристик (σ_i , σ_b , δ), применение расходных материалов разрешается после проведения необходимых испытаний в рамках процедуры входного контроля (в объеме, предусмотренном п. 1.8. табл. 6.2) и проверки соответствия полученных данных требованиям настоящего стандарта.

Керамические формирующие кольца

3.7. Для приварки «упоров» следует применять керамические формирующие кольца одноразового использования типа UF по ISO 13918 (тип SN по DIN 32500).

В проектной, технической и договорной документации указывают марку керамического кольца и диаметр рабочего торца «упора», для сварки которого применяется ланное кольцо.

Марку и типоразмер керамических формирующих колец принимают по стандарту ISO 13918 или национальному стандарту страны-производителя поставляемой партии колец.

Пример обозначения:

ÚF-22 ISO 13918 или SN-22 DIN 32000-3

керамическое кольцо зарубежного производства для сварки «упоров» диаметром 22 мм.

Для применения в мостостроении рекомендуются керамические формирующие кольца, изготавливаемые фирмой «KÖCO» (Германия).

Размеры керамических колец для «упоров», допускаемых в мостостроении, должны соответствовать значениям, указанным на рис. 3.2 и в табл. 3.4.

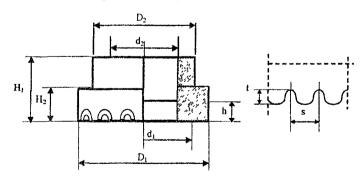


Рис. 3 2. Размеры керамических колец для «упоров», рекомендованных для мостостроения

Таблица 3.4

Показатель	Допуск, мм	Размеры основных частей кольца при диаметре «упора», мм		
		19	22	25
D_{l}	+1,0, -1,0	30,8	39	41
D_2	+1,0, -1,0	26	30,7	35,5
dı	+0,5, - 0,5	25	28	31
d ₂	+0,5,0	19,4	22,8	26
H_1	+0,5, - 0,5	16,7	18,6	21
H_2	+0,5, - 0,5	12	14	16,5
h ¹⁾	+0,5, - 0,5	10	12	15
s ¹⁾	+0,1, - 0,1	5	6	7
t ₁₎	+0,1, - 0,1	2	2,5	3

Примечания. В таблице выделены значения показателей, рекомендованные для применения в мостостроении в качестве основных.

Овальность наружного и внутреннего диаметров не должна превышать предельных отклонений для соответствующих диаметров.

- 3.8 Поставка керамических колец осуществляется партиями. Партия должна состоять из колец одного типоразмера. Размер партии определяется фирмой-изготовителем колец. Каждая партия должна сопровождаться сертификатом, в котором должны быть указаны:
- номер и дата оформления сертификата;
- фирма (завод) изготовитель колец;
- наименование, типоразмер и маркировка изделия;
- количество колец в партии и вес партии.

Использование партий керамических колеп, не имеющих сертификата фирмыизготовителя, не допускается.

Хранение и подготовка расходных материалов

3.9 Расходные материалы должны поставляться и храниться в герметичной таре, не допускающей повреждение, загрязнение или увлажнение изделий в процессе транспортировки и хранения.

Каждая единица тары с расходными материалами должна быть снабжена биркой (этикеткой) или вложенным сертификатом с указанием наименования изделия, типоразмера, номера партии, количества изделий в таре и веса.

3.10. «Упоры» следует хранить в сухом отапливаемом помещении в транспортной таре при температуре не ниже $+10^{\rm e}$ C. «Упоры» не должны подвергаться воздействию влаги.

«Упоры» не должны иметь на поверхности ржавчину, окалину, краску, масло и влагу. В случае появления ржавчины на рабочем (переплавляемом) конце «упора» (на длине 20 мм от торца) и/или головке, их подвергают очистке абразивоструйной обработкой или механическими щетками.

«Упоры», загрязненные в процессе транспортировки или хранении горючесмазочными материалами, подвергают промывке и обезжириванию.

^{.1) –} размер дан факультативно.

3.11. Керамические формирующие кольца следует хранить в сухом отапливаемом помещении в транспортной таре при температуре не ниже +10°С. Кольца не должны подвергаться воздействию влаги.

Керамические формирующие кольца должны быть очищены от грязи (земли). Керамические кольца, подвергшнеся воздействию горюче-смазочных материалов, к использованию не допускаются.

Керамические кольца, подвергшиеся при транспортировке или хранении воздействию влаги, допускаются к использованию после прокаливания при температуре 900°С в течение 1 часа. Высокотемпературное прокаливание допускается не более 2 раз.

В условиях заводского изготовления и монтажа непосредственно перед запуском в производство должна производиться прокалка колец перед сваркой в прокалочных электродных печах при температуре 350°C в течение 1 часа. После прокалки керамические кольца хранят до использования в сущильных шкафах при температуре 80-90°C.

3.12. «Упоры» и керамические кольца в условиях заводского изготовления подают к месту сварки в количестве, необходимом для выполнения сварочных работ в течение 8 часов.

В условиях монтажа расходные материалы к месту сварки рекомендуется подавать в количестве, достагочном для приварки на участке в пределах длины сварочного кабеля.

Расходные материалы подают к месту сварки в закрытых металлических емкостях. При отрицательной температуре воздуха после выемки из сушильного шкафа керамические кольца перед выносом к месту сварки должны быть охлаждены до температуры воздуха в помещении ($+15...18^{\circ}$ C).

"Упоры", не использованные при отрицательной температуре наружного воздуха в течение 4 часов, должны быть помещены в сушильные шкафы. Керамические кольца, не использованные в течение 4 часов, перед использованием должны быть подвергнуты повторному прокаливанию.

4. СВАРОЧНОЕ ОБОРУДОВАНИЕ

4.1. Сварку «упоров» выполняют сварочным оборудованием, состоящим из специализированной сварочной установки для приварки «упоров», сварочного и коммутационного кабелей длиной не более 20 м, сварочного пистолета (сварочной головки).
4.2. В качестве источников питания сварочной дуги следует применять специализированные выпрямители фирмы «КÖCO» модели 3000Е (с внешним контролирующим устройством BSTK1), 2600Е и 2603Е, а также другие модели, рекомендуемые для применения фирмой «КÖCO». Также допускается применять специализированные выпрямители других фирм (в том числе фирмы «Nelson»: INTRA 2100, ATLAS 2800-4; фирмы BTH Tech: LBH 2100, LBH 2600, LBH 2600-P), технические характеристики которых удовлетворяют требованиям табл. 4.1.

Таблица 4.1.

Технические параметры сварочной установки	Значение параметров
Напряжение сети переменного тока, В	380
Напряжение холостого хода, В	не менее 80
ПВ, %	3-10
Область бесступенчагой регулировки тока, А	1000-3000
Область регулирования времени горения дуги, мс	100-1500
Пределы колебания параметров режима сварки	не более ± 10%
Производительность при днаметрс «упора»19-25 мм, болтов/мин	6-15

Сварочная установка должна обеспечивать плавную регулировку параметров режима сварки и иметь встроенные или внешние приборы для контроля и регистрации параметров режима сварки.

4 3. Питание сварочной установки электрическим током должно осуществляться от стационарных промышленных сетей мощностью не менее 100 кВт. Колебание напряжения в сети не должно превышать ±5 % от номинального значения, указанного в паспорте сварочной установки Напряжение сети следует контролировать в течение смены.

Питание сварочной установки от передвижных электростанций не допускается Сварочное оборудование подключают и заземляют в соответствии с Инструкцией фирмы-изготовителя по эксплуатации сварочной установки.

4.4. Для сварки «упоров» следует применять переносные устройства - сварочные пистолеты, поставляемые фирмой-изготовителем в комплекте или раздельно со специализированными источниками сварочного тока.

Для специализированных источников сварочного тока следует применять модели сварочных пистолетов, рекомендованные фирмой-производителем для каждой модели сварочной установки (для установок фирмы «KÖCO» – сварочные пистолеты модели К22-Д, К-24, КЕ-22, КЕ-24, КЕ-26 или иные модели, рекомендованные фирмой)

Сварочный пистолет имеет:

- зажимное устройство (цангу) для удержания «упора» во время сварки и подачи на него сварочного тока;
- электромагнитный привод для отрыва «упора» от металла конструкции с целью возбуждения дуги и поддержания во время горения дуги постоянной высоты отрыва;
- пружину для осадки «упора» в сварочную ванну и масляный демпфер для регулирования скорости осадки;
- упорные штанги для установки пистолета и гашения реактивной силы от осадки «упора».

Технические характеристики сварочных пистолетов должны удовлетворять требованиям табл. 4.2.

Таблица 4.2.

Технические параметры	Значение параметров
Диаметры привариваемых «упоров», мм	19-25
Высота привариваемых «упоров», мм	
• основная комплектация	150-200
• расширенная комплектация	100-250
Область регулирования высоты подъема «упора», мм	2-6
Шаг регулирования высоты подъема «упора», мм	не менее 0.5
Максимальное напряжение на подъемном магните, В	60-90
Наличие демпфера осадки "упора"	есть
Скорость погружения «упора», мм/с	30-120

4.5. Для подключения сварочного пистолета к сварочной установке и обратных проводов к конструкции следует применять один или два медных сварочных кабеля общим сечением не менее 95 мм². Длина кабелей не должна быть более 20 м.

Все сварочные кабели должны быть оснащены медными концевыми клеммами, обеспечивающими надёжное соелинение проводов Сварочные кабели не должны иметь повреждений изоляции. Кабели с повреждённой изоляцией не ремонтируются и подлежат замене.

При выполнении сварки необходимо следить за тем, чтобы коммутационный, обратные и силовой кабели не были свернуты в бухты и не лежали на источнике питания.

4.6. При эксплуатации сварочной установки и пистолета следует проводить регулярные проверки и техническое обслуживание оборудования, а также соблюдать сроки новерки оборудования и замены изнашивающихся деталей.

Ежедневно перед началом каждой рабочей смены следует выполнять их осмотр и опробование с целью проверки состояния и работоспособности сварочной установки, сварочного пистолета и сварочных кабелей.

Еженедельно следует производить продувку сварочной установки с целью удаления из неё пыли. Обдув проводят струёй сухого сжатого воздуха, а в монтажных условиях — струёй кислорода из газового резака.

Еженедельно следует проводить проверку высоты отрыва (подъёма) «упора» сварочным пистолетом, напряжения на подъемном электромагните и скорости осадки «упора» по методикам, рекомендованным фирмой-производителем оборудования. Допустимые отклонения по высоте отрыва +0,5 мм

4.7. Сварочная установка и контрольно-измерительные приборы подлежат обязательной периодической проверке и поверке.

Проверку сварочной установки, оснащенной встроенным или внешним прибором для регистрации параметров режима сварки, проводит предприятие, эксплуатирующее установку, не реже 1 раза на 10 тысяч приваренных «упоров», а также после перерыва в работе 5 дней и более. Проверка проводится по штатным контрольно-измерительным приборам сварочной установки. Допустимые отклонения ±10 % от заданных значений параметров. Акты о проверке сварочной установки предъявляются независимой контролирующей организации.

Метрологическую поверку встроенных или внешних контрольно-измерительных приборов для регистрации режимов сварки проводят в установленном порядке не реже 1 раза в течение 12 месяцев независимо от количества приваренных за это время «упоров» по методике фирмы-изготовителя оборудования.

Контролю подлежит:

- напряжение холостого хода источника;
- ток сварки в начале, середине и конце интервала времени горения дуги;
- время прохождения тока (горения дуги) от момента включения сварочного тока до начала фазы осадки «упора».

Допустимые отклонения ±10 % от заданного значения.

4.8 Для обеспечения стабильности процесса сварки необходимо периодически производить ремонг и замену деталей и узлов сварочного пистолета. Быстро изнашивающимися деталями и узлами сварочного пистолета являются: масляный демпфер; стальной цанговый держатель «упора», зажимное кольцо на толкателе «упора»; кабель сварочный. Возможно повреждение направляющих и ослабление возвратной пружины.

Рекомендуется производить замену отдельных узлов сварочного пистолета со следующей периодичностью:

- стальной цанговый держатель «упора» после сварки 3-5 тысяч «упоров»,
- демпфер сварочного пистолета после сварки 20-25 тысяч «упоров»;
- сварочный пистолет после сварки 50 тысяч «упоров».

С целью обеспечения бесперебойной работы оборудования рекомендуется каждую сварочную установку комплектовать запасными деталями и запасными сварочными пистолетами.

4.9. Для центрирования керамического кольца относительно «упора» с целью предотвращения термического дутья и для обеспечения перпендикулярности «упора» в момент сварки, сварочный пистолет может быть оборудован дополнительными устройсть ами. В случае использования указанных дополнительных приспособлений необхо-

димо следить за силой прижатия пистолета к изделию в момент сварки для обеспечения заданной величины осадки «упора» в сварочную ванну и предотвращения образования усадочных трещин в металле шва.

5 ПРИВАРКА «УПОРОВ»

- 5.1. Приварку «упоров» следует производить в соответствии с «Технологическим процессом», который разрабатывается заводом-изготовителем мостовых конструкций или строительно-монтажной организацией в качестве типового документа и утверждается в установленном порядке руководством предприятия. Типовой «Технологический процесс» подлежит согласованию с НПИ мостов
- 5.2. «Технологический процесс» должен соответствовать требованиям настоящего Стандарта и содержать:
 - указания по организации и комплектации сварочного участка;
 - перечень применяемого специализированного сварочного оборудования и расходных материалов;
 - требования к подготовке конструкций и расходных материалов;
 - последовательность технологических операций;
 - параметры режима сварки;
 - мероприятия по предозвращению магнитного дутья (схемы подключения обратных проводов для конструкций различной формы, конструкцию и правила установки «компенсационных масс», способы размагничивания конструкций и т.п.);
 - при необходимости мероприятия по предотвращению общих сварочных деформаций конструкций от сварки «упоров» при заводском изготовлении элементов;
 - порядок проведения контроля и испытаний расходных материалов и сварных соединений (с указанием точек контроля, контролируемых параметров, ответственных лиц, методов и объемов контроля и испытаний);
 - перечень исполнительной документации, порядок ее ведения с указанием ответственных лиц;
 - периодичность и порядок проверки исправности оборудования (метрологический контроль, периодичность контроля электрических сетей и замены деталей, наличие о ветственных лиц);
 - права и обязанности лиц, осуществляющих руководство сварочными работами, настройку оборудования и приварку «упоров», а также контроль качества работ.
 - 5.3. Сварку «упоров» в условиях заводского изготовления или на монтаже следует выполнять на специализированном участке

Участок должен быть оснашен:

- независимой силовой электросетью для питания сварочной установки и измерительными приборами для конгроля над параметрами сети,
- комплектом специализированного сварочного оборудования для приварки «упоров», включая встроенные или внешние приборы для регистрации параметров режима сварки;
- подмостями для доступа работников ко всему участку, на котором выполняется сварка, и для размещения сварочного оборудования в непосредственной близости от места сварки (расстояние не более 20 м);
- оборудованием для абразивоструйной пли механической абразивной очистки элемента перед сваркой «упоров»;
 - стационарным или переносным осветительным оборудованием;

- сухим отапливаемым помещением для хранения запасов расходных материалов, с установленными в нем элекгропечами для прокалки и хранения керамических колец с температурой нагрева до 350 °C и печами для хранения прокаленных материалов при температуре до 90 °C;
- переносными навесами (тепляками) для выполнения работ в условиях монтажа при атмосферных осадках и отрицательной температуре воздуха;
- газорезательной аппаратурой для предварительного пологрева металла пояса при приварке «упоров» в условиях монтажа,
 - сварочным оборудованием для ручной дуговой сварки.
- 5.4. Поверхность металла элеменгов пролетного строения перед приваркой «упоров» в местах их постановки должна быть очищена от грунтовки и ржавчины абразивоструйной обработкой или механическим абразивным инструментом. В случае применения пескоструйной обработки, места приварки каждого «упора» рекомендуется дополнительно очищать механическим щетками или абразивным инструментом.

Степень очистки поверхности должна соответствовать степени 2 по ГОСТ 9.402-80.

В условиях монтажа очищенная под приварку «упоров» поверхность конструкции, сварочное оборудование и зона сварки во время приварки «упоров» должны быть защищены от попадания песка и пыли.

5.5. При приварке «упоров» следует использовать разметку или технологическую оснастку, обеспечивающие проектное положение «упоров» с допускаемыми отклонениями, указанными в табл. 5.1.

Таблица 5.1

Контролируемый размер	Допускаемое отклонение, мм
Расстояние от оси крайнего ряда «упоров» до продольной кромки пояса	±2
Расстояние между осями соседних рядов «упоров»:	
вдоль оси элемента	<u>±</u> 5
поперек оси элемента	<u>+</u> 3

5.6. В заводских условиях при температуре окружающего воздуха ниже +5°C, а на монтаже - независимо от температуры окружающего воздуха, сварку «упоров» следует вести после предварительного подогрева поверхности металла до температуры 100-110°C.

Предварительный подогрев осуществляют непосредственно перед сваркой "упоров".

Температуру поверхности измеряют цифровыми контактными термометрами, а также по диаметру высушенного пятна, который должен быть не менее 100 мм.

При выполнении сварки в условиях монтажа зона сварки должна быть защищена от дождя, снега и ветра. При отрицательной температуре воздуха необходимо обеспечить обогрев помещения (будки) со сварочной установкой для поддержания в нем температуры не ниже $+5^{\circ}$ C.

При температуре окружающего воздуха ниже минус 20^{0} С приварка «упоров» не допускается.

- 5.7. Цикл сварки состоит из нескольких этапов:
- Этап 1. Настройка параметров режима сварки. Закрепление «упора» в цанге сварочного пистолета. Установка пистолета с «упором» на керамическое кольцо, предварительно уложенное на изделие;
- Эган 2. После нажатия кнопки «пуск» подъемный механизм сварочного пистолета отрывает «упор» от изделия на высоту отрыва (h) для возбуждения сварочной дуги Оплавление торцевой части «упора» и поверхности металла

под воздействием сварочной дуги при постоянном значении сварочного тока (стадия дуговой сварки);

- Этап 3. Осадка оплавленного «упора» возвратной пружиной сварочного пистолета вниз на величину, равную величине выступа в свободном состоянии торца «упора» за край керамического кольца (L). Вытеснение части расплавленного металла из сварочной ванны и формирование кольцевого валика. Отключение сварочного тока с задержьой для прогрева металла сформировавшегося плав (стадия контактной сварки);
- Этап 4. Удаление керамического кольца после охлаждения металла шва в течение 10 секунд.
- 5.8. Параметрами режима сварки «упоров» являются
 - полярность тока;
 - сила сварочного тока Ісв. А;
 - время сварки (горения дуги) t, сек;
 - напряжение дуги U, B,
 - мощность сварочной дуги W, Вт сек,
 - высота отрыва «упора» от изделия h, мм;
 - величина выступа торца «упора» за кромку керамического кольца L, мм
 - скорость осадки (степень демпфирования);
 - количество и положение клемм обратного провода.
- 5.9 Сварку «упоров» выполняют на постоянном токе прямой полярности. Клемма «плюс» источника питания сварочной дуги должна быть плотно прикреплена струбциной к очищенной от краски и ржавчины поверхности конструкции.
- 5.10. Силой сварочного тока, указываемой в режиме сварки, является величина, которая наблюдается в интервале времени от момента включения тока до начала фазы осадки «упора».

Необходимую величину сварочного тока определяют в зависимости от диаметра привариваемого «упора» и времени сварки.

Значение сварочного тока для «упоров» днаметром 19...25 мм следует принимать по номограммам, рекомендованным фирмой-разработчиком (изготовителем) сварочного оборудования. Ориентировочное значение сварочного тока может быть определено по формуле:

$$I_{\text{cB}} = 90 \times D_{\text{vigors}} \tag{5.1}$$

5.11. Временем сварки (горения дуги) является интервал от момента включения сварочного тока до начала фазы осадки «упора».

Время сварки для «упоров» диаметром 19...25 мм следует принимать по номограммам, рекомендованным фирмой-разработчиком (изготовителем) сварочного оборудования. Ориентировочное время сварки может быть определено по формуле.

$$t_{\rm cB} = 0.04 \times D_{\rm ynopa} \tag{5.2}$$

- 5.12. Напряжение дуги определяется главным образом высотой отрыва «упора» от изделия и в процессе сварки не регулируется. Напряжение дуги является внутренней характеристикой сварочного оборудования. При сварке напряжение дуги колеблется в диапазоне 20-40 В. При расчете мощности сварочной дуги напряжение следует принимать равным 30В.
- 5.13. Мощность сварочной дуги зависит от силы сварочного тока, напряжения дуги и времени сварки и определяется по формуле

$$W = I \times U \times t \tag{5.3}$$

5.14. Высотой отрыва «упора» от изделия (h) называется величина, на которую в начальный момент сварочного цикла «упор» автоматически поднимается для возбуждения и устойчивого горения сварочной дуги. Высоту огрыва «упора» от изделия назначают в зависимости от диаметра «упора».

Величина выступа торца «упора» за кромку керамического кольца ($L_{\epsilon\iota\iota cmyna}$) зачает объем металла «упора», который будет расплавлен сварочной дугой

Качество сварного шва зависит от высоты огрыва (h) и величины выступа горца «упора» за кромку керамического кольца (L. Указянные величины ориентировочно принимают по габл 5.2 и корректируют по результатам опытной сварки

Таблица 5 2.

Huguarn ayunna	Ориентировочные значения, мм		
Диаметр «упора», мм	высота отрыва (h)	величина выступа ($L_{sы}$.	
19	3,5	4,0	
22	4,5	4,0	
25	5 0	5,0	

Примечание. В таблице выделены параметры «упоров», рекомендованные для применения в мостостроении в качестве основных.

5.15. Скорость осадки «упора» в сварочную ванну влияет на качество сплавления «упора» с основным металлом и определяет структуру и свойства металла шва и зон термического влияния сварного соединения «упора» Увеличение степени демпфирования замедляет перемещение «упора» и может приводить к образованию усадочных трещин в средней части сечения сварного шва Уменьшение степени демпфирования ускоряет погружение «упора» в сварочную ванну и приводит к расплескиванию расплавленного металла и возникновению несплавлений по периметру «упора».

Скорость осадки регулируют изменением степени демифирования «упора» (табл 5 3)

Таблица 53

Скорость осадки, мм/сек	Степень демпфирования
120	1
60	2
30	3

Примечание: В таблице выделены рекомендуемые значения параметров

- 5 16 Правильность выбранных режимов сварки «упоров» следует проверять в соответствии с разделом 6 настоящего стандарта. Причины возможных дефектов и способы их устранения приведены в Приложении А настоящего стандарта.
- 5 17. Место и схемы подключения клеммы «плюс» сварочной установки к конструкции следует выбирать таким образом чтобы исключить магнитное «дутье». Магнитное «дутье» приводит к перавномерному формированию кольцевого валика, окислению металла шва и снижению механических свойств сварного соединения на участке, где валик шва отсутствует.

Магнитное «дутье» проявляется при сварке «упора» вблизи края листа, вблизи места прикрепления клеммы «плюс», вблизи места изменения толщины проката Исключить магнитное «дутье» можно выбором мест подключения клемм «п нос», их переключением по мере приварки «упоров» к конструкции или изменением ориентирования сварочного пистолета относительно конструкции. Для предотвращения магнитного «дутья» при сварке «упоров» вблизи края листа следует применять «компенсационную массу» — стальную пластину, устанавливаемую без зазора на край листа напротив привариваемого «упора»

6 КОНТРОЛЬ КАЧЕСТВА

6.1. Качество сварных соединений «упоров» зарактеризуется качеством формирования кольцевого ваника шва, наличием наружных и внутренних дефектов, а также механическими характеристиками сварного соединения «упора»

Качество сварных соединении «упоров» должно соответствовать гребованиям табл 61

Ta6.1Параметры соединения и иг Допускленое значение вид дефектов 1. Размеры сос динсипя 1.1. Высота кольцевого на шка шва (0.15 0.35) Dyrup AIM 12 Перавномерность высоты кольцего-Перавномерность высоты не является бракого валика шва по длине окружности вочным признаком в случае соблюдения требовании и 11 13 Отклонение положения супора» от 5 MM вертикали в продольном и поперечном на высоте 100 мм от поверхности листа направленин 1.4. Отклонение высоты приваренного «упора» от номинальной высоты, равной + 2 MM Hynopo = Lynopo - Lawconina 2 Наружные дефекты сварного шва 2.1 Формирование кольцевого валика Не допускается отсутствие кольцевого вачика шна шва на любой длине окружности «упора» 22 Поры Наличие пор и свищей в кольцевом валике не является браковочным признаком 2.3. Трещины, несплавления, подрезы у основания «упора» при отсутствии коль-Не допускаются любого размера цевого валика 3. Внутренине дефекты сварного шва 3.1 Любые дефекты в виде несплавле-Не допускаются любые дефекты у которых ния, трещин, пор, окисных пленок, шласуммарная площадь проекции на горизонковых включений тальную плоскость превышает 5 % площади поперечного сечения «упора»; протяженность на макроштифе превышает 20 % днаметра «упора», 4. Механические характеристики сопротивление Временное ≥450 MHa статическому растяжению 4.3 Твердость всех зон сварного соеди-<350 HV 4 4 Угол стагического изгиба без обране менее 60^{0} от вертикани зования надрывов в зоне спарного цива, по телу «упора» или металлу пояса

- 6.2 Конгроль качества сварки «упоров» осуществляют на всех стадиях производства. Ответственность за качество изготовления несут исполнители, руководители данного вида работ и работники технического конгроля предприятия, выполняющего сварочные работы
- 6.3. При проведении сварочных работ следует выпочнять виды контрочя, указанные в табл. 6.2.

CTII 015-2001

Таблица 62

*			Laonnua o Z
Вид контроля	Цель контроля	Вид испытаний	Объем контроля
Периодичность	Исполнитель		(испытаний)
проведения			
	2	3	4
1. Испытание	Оценка свариваемости	1.1 Визуально-	100 % образнов
технологических	материалов, пригоднести	измерительный	ļ
проб	режимов сварки,	контроль	
-	оценка механических ха-	1 2. Ультразвуко-	100 % образцов
	рактеристик	вой контроль	}
Проводится не-	материалов и соелинений	13 Ударное испы-	5 образцов
ред началом	·	тание на загиб	·
работив		1 4 Пспытание на	5 образцов
елучаях,		статический отрыв	•
предусмотренных	Исполнитель - производ-	1.5 Испытание на	5 образнов
вт 66	ственная организация	ударный загиб с	1
	,	«надрезом»	
		1 6 Исследование	2 образца
		макрошлифов	
		17 Химический	1 образец
		анализ металла	1
		«упоров»	
		18 Механические	по 3 образца на
		характеристики	каждый вид
		«упора»	іннатыны
2. Входной кон-	Оценка соответствия рас-	2 1 Визуально-	2 % изделий из
трочь	ходных материалов на-	измерительный	каждой посту-
Проводится при	стоящему стандарту	конгроль	пающей партии
получении		Nonepone	l marca, or map
каждон партин	Исполнитель – техниче-	2 2. Химический	1 образец
расходных мате-	ский контроль производ-	анализ металла	, copased
риалов	ственной организации	«упоров»	
, marin		,,	
3. Рабочий кон-	Для проверки правильно-	3 1 Проверка	каждая
1рочь	сти установки режимов	сварочного	установка
а) Проводится	сварки	оборудования	Joinnobra
ежедисвно перед	Исполнитель - произво-	3 2 Визуально-	3 образца
началом каждой	дитель рабог	измерительный	у образца
смены не менее	χιποιο μασσι	конгроль	
1 раза в сутки,		3 3 Ударные испы-	3 образца
б) при появлении		тания на загиб	э ооразца
о) при появлении большого коли-		тания на загио [
чества дефектов в			
течение смены			
теление смены	l	J	<u></u>

,	7		олжение табл 62
<u> </u>	2	3	4
4. Операцион-	Проверка качества под-	4.1 Визуально-	100%
пец контроле	готовки материалов и	измерительный	«упоров»
	конструкций,	контроль	
Проводится не-	исправность оборудова-		ļ
риодически в	ния, соблюдение техно-		
процессе сварки	логии приварки «упо-		
	ров»		
	Исполнитель - произво-		
	дитель работ		
5. Приемочный	Проверка качества и при-	5 1 Визуально-	100 %
контроль	емка готовых изделий	измерительный	«упоров»
•	Исполнитель —	контроль	,
	технический контроль	5.2 Пзмеригель-	20% «упоров»
	производителя работ и	ный контроль от-	,
	независимая контроли-	клонения высоты	
	рующая организация	«упоров» согласно	
		п 14 табл 6.1.	
		5.3 Ультразвуко-	а) автолорожные
		вой конгроль	и пешеходиые
		•	мосты – не ме-
)		нее 20 % «упо-
			ров» на каждом
			элементе (отпра- вочной марке,
			монтажном бло-
			ке и др) или на
			каждые 100 пп
			«упоров», при-
			варенных после
			монтажа конструкции; *)
	į		б) железнодорож
			ные и совме-
			щенные мосты -
· · · · · · · · · · · · · · · · · · ·			100 % «упоров»

^{*)} На предприятиях и в строительных организациях, в которых объем сварки «упоров» с момента освоения данной технологии не превысил 100 тыс. штук, ультразвуковой контроль производят в объеме 100%.

- 6 4 В исполнительную документацию по сварке «упоров» следует включать.
 - сертификаты на расходные материалы,
 - акты входного контроля поступивших партий расходных материалов,
 - протоколы и заключения по испытаниям технологических проб,
 - журнал сварочных работ (или иной документ, принятой на предприятии формы);
 - журнал ультразвукового контроля (Приложение В).

В журнале сварочных работ должны быть указаны.

- результаты испытаний в процессе рабочего контроля;
- результаты визуально-измерительного и ультразвукового контроля при операционном и приемочном контролях,

- количество и виды дефектов;
- отметки об устранении дефектов.

Испытания технологических проб

- 6.5. Испытания технологических проб выполняет производственная организация. Испытания проводят с целью оценки механических характеристик соединений основных и расходных материалов и проверки пригодности оборудования и режимов сварки.
 - 6.6 Испытания технологических проб следует производить:
 - перед началом применения технологии сварки «упоров» на каждом предприятии при заводском изготовлении;
 - перед началом сварочных работ по приварке «упоров» на монтаже каждого нового объекта;
 - при изменении технологии сварки «упоров», а именно: марки материала или диаметра «упора»; марки основного металла (отличной от разрешённых п. 2.3. настоящего стандарта); марки и модели специализированного сварочного оборудования; параметров режима сварки;
 - для проверки стабильности свойств сварных соединений «упоров» при заводском изготовлении с периодичностью 1 раз на 100 тыс. «упоров», но не реже 1 раза в год:
 - при возобновлении сварочных работ по приварке «упоров» после перерыва не менее 6 месяцев для проверки работоспособности специализированной сварочной установки;
 - при появлении большого количества дефектов (см. п. 6.21) или при выявлении в процессе рабочего контроля хрупких разрушений сварных соединений «упоров».

Испытания технологических проб выполняют для каждой специализированной сварочной установки, используемой на данном производстве, а также для каждого применяемого диаметра и материала «упора» и применяемых керамических колец.

6.7 Испытания технологических проб проводят в соответствии с указаниями Приложения Б настоящего стандарта.

При неудовлетворительных результатах испытаний по одному или нескольким показателям на одном или нескольких образцах испытания повторяют по этим же показателям на удвоенном числе образцов. Если и при этом результаты испытаний окажутся неудовлетворительными, то до выяснения причин применение проверяемых расходных материалов и оборудования должно быть остановлено.

Для выяснения причин должны быть проверены: качество основного металла и металла «упоров»; исправность оборудования; правильность выбора режимов сварки; качество подготовки расходных материалов.

- 6.8. По результатам испытаний технологических проб оформляют протокол, в котором указывают:
 - номер акта сварки контрольных образцов технологических проб;
 - марку, модель и заводской номер оборудования;
 - параметры режима сварки;
 - марку и толщину основного металла и номер сертификата на металлопрокат;
 - марку материала, типоразмер и номер сертификата на партию «упоров»;
 - типоразмер и номер сертификата на партию керамических колец:
 - дату и место проведение испытаний;
 - результаты испытаний контрольных соединений.

Протокол испытаний подписывает главный сварщик, начальник ОТК, заведующий ЦЗЛ (испытательной лаборатории), представитель независимой контролирующей организации и утверждается главным инженером производственной организации.

Входной контроль

6.9. Входной контроль выполняет производственная организация для проверки качества поступивших расходных материалов и их соответствия сертификатам, а также требованиям настоящего стандарта. Входной контроль проводят для каждой партии расходных материалов.

. Пробы отбирают в пропорциональном количестве из каждой упаковки (тары) «упоров» и керамических колец. Осмотр проводят без увеличительных приборов.

По результагам входного контроля каждой партии оформляют акт.

- 6.10. Проверку качества «упоров» производят визуально-измерительным методом. При контроле проверяют:
 - наличие на головке «упоров» маркировки наименование фирмыпроизводителя и марки стали;
 - соответствие диаметра и длины «упоров» сертификату и чертежам КМ;
 - состояние поверхности «упора»: отсутствие трещин, надрывов, окалины и закатов на поверхности «упоров»; отсутствие вмятин на рабочем конце «упоров» (на расстоянии не менее 50 мм от торца «упора»);
 - наличие ионизирующего наконечника на рабочем торце «упора».
 - 6.11. Браковочными признаками являются:
 - а) отсутствие маркировки;
 - б) отклонение длины «упоров» от проектного размера на величнну более ±5 мм;
 - в) превышение отклонений диаметра от значений, указанных в табл. 3.3;
 - г) наличие трещин, надрывов, окалины и закатов на поверхности «упоров»;
 - д) наличие любых вмятин на расстоянии не менее 50 мм от рабочего торца «упора»;
 - ж) отсутствие или повреждение (например, смятие) ионизирующего наконечника на рабочем торце «упора»;
- 6 12. В случае обнаружения брака (по любому из перечисленных в п. 6.11 признаков) более чем в 5 % от числа отобранных «упоров» проверку повторяют на удвоенном числе «упоров» данной партии. В случае обнаружения брака на удвоенном числе «упоров» (более чем в 5 % от числа повторно отобранных «упоров») вся партия бракуется.

При наличии дефектов, перечисленных в подпунктах б), д) ж) пункта 6.11., допускается пересортировка забракованной при визуально-измерительном контроле партии, с последующей приёмкой пересортированной партии.

6.13. При входном контроле проверяют химический состав металла «упоров». Химический анализ выполняют в соответствии с указаниями Приложения Б настоящего стандарта.

При несоответствии химического состава «упоров» требованиям табл. 3.2. настоящего стандарта применение данной партии допускается после согласования с проектной организацией и НИИ мостов.

- 6.14. Контроль качества керамических колец производят визуально-измерительным методом. При контроле проверяют:
 - геометрические размеры колец;
 - наличие трещин, механических повреждений и замасливания на поверхности колец, в том числе опорных;

- шаг и высоту зубцов отверстий дегазации.
- 6.15. Браковочными признаками керамических колец являются:
- а) отклонения размеров сверх допусков, приведенных в табл. 3.4: наружного диаметра кольца; диаметра отверстия для «упора»; овальности наружного и внутреннего диаметров;
- б) любые трещины и механические повреждения на поверхности;
- в) любые дефекты формирования отверстий дегазации неравномерный шаг и высота зубцов;
- г) загрязнение горюче-смазочными материалами.
- 6.16. В случае обнаружения брака более чем в 5 % отобранных колец проверку повторяют на удвоенном числе колец данной партии. В случае обнаружения брака на удвоенном количестве колец (более чем в 5 % повторно отобранных колец) вся партия бракуется.

Рабочий контроль

 Рабочий контроль производят для проверки исправности оборудования и правильности установки режимов сварки.

Рабочий контроль производят ежедневно:

- перед началом каждой смены не реже одного раза в сутки;
- при появлении в течение рабочей смены большого количества дефектов формирования (более 7 % «упоров» от числа приваренных).

При выполнении рабочего контроля проверяют состояние сварочного оборудования и качество сварных соединений контрольных «упоров».

Результаты рабочего контроля заносят в исполнительную документацию (п.6.4, настоящего стандарта).

- 6.18. При осмотре оборудования проверяют:
- контактные соединения токоведущих кабелей и соединения кабелей сварочного пистолета; наличие коррозии в соединениях;
- изолящию токовелущих кабелей:
- плотность закрепления держателя «упоров» в сварочном пистолете; наличие на держателе пригара и степень зажатия «упоров» в держателе;
- цангу держателя «упора» в сварочном пистолете;
- крепление защитного колпачка на сварочном пистолете;
- отсутствие сварочных брызг на подвижных частях штока и штангах сварочного пистолета.

На сварочном источнике с ручной регулировкой сварочного тока и времени сварки следует ежедневно переустанавливать указанные параметры сварки для поддержания потенциометров в исправном состоянии.

Перед началом рабочей смены, а также периодически при выполнении работ, следует проверять правильность установки величины выступа «упора». Проверку проводят при помощи шаблона.

6.19. Качество сварных соединений «упоров» проверяют приваркой 3-х контрольных «упоров» к образцу-свидетелю, после чего выполняют визуально-измерительный контроль качества их приварки и испытание на ударный загиб.

Образец-свидетель изготавливают из стали, применяемой в конструкции, размером не менее 500×500 мм толщиной 20-40 мм. Шаг приварки «упоров» не менее 100 мм. Образец-свидетель применяют для многократного использования, в том числе для сварки с обеих сторон.

- 6.20. При визуально-измерительном контроле выполняют:
- регистрацию параметров сварки каждого контрольного «упора»;
- проверку качества формирования кольцевого валика шва;

- измерение высоты приваренных «упоров».
- 6.21. Испытания контрольных «упоров» на ударный загиб проводят после визуально-измерительного контроля в соответствии с п.Б.5 Приложения Б настоящего стандарта.
- 6.22. Зарегистрированные параметры сварки контрольных «упоров» не должны отличаться от заданных технологией величин более чем на \pm 10%. Допустимые отклонения мощности сварочной дуги \pm 20 %.

Качество формирования кольцевого валика шва и высота приваренных "упоров" должны соответствовать табл. 6.1.

Испытания «упоров» на ударный загиб считаются выдержанными, если при загибе «упора» на 60^0 от вертикали в сварном шве или околошовной зоне нет видимых надрывов или трещин.

6.23. Если результаты контроля не удовлетворяют требованиям п.6.21., то проверяют исправность оборудования, правильность установки режимов сварки и технологических приемов по исключению магнитного дутья. После устранения причин появления дефектов повторно приваривают 3 контрольных «упора» и подвергают их испытаниям по пп.6.20-6.22.

При отрицательных результатах повторного контроля сварочные работы следует прекратить до устранения причин появления дефектов.

Операционный контроль

6.24. Операционный контроль производят с целью проверки соблюдения технологии и обеспечения качества выполнения работ. Контроль выполняет инженернотехнический персонал производственной организации на всех стадиях технологической последовательности операций.

При операционном контроле проверяют:

- качество подготовки расходных материалов и поверхности элементов;
- напряжение в сети питания сварочной установки;
- техническое состояние сварочной установки, сварочного пистолета и кабелей:
- правильность проведения рабочего контроля на образцах-свидетелях;
- соблюдение режимов предварительного подогрева и параметров режима сварки;
- точность приварки «упоров» в соответствии с проектной документацией и требованиями настоящего стандарта;
- качество формирования кольцевого валика;
- измерение высоты приваренных «упоров».

Контроль проводят визуально, без применения увеличительных приборов, и измерением параметров, заданных в конструкторско-технологической документации.

6.25. При операционном контроле следует оценивать стабильность технологии сварки. Технологию сварки следует считать стабильной, если количество «упоров» с дефектами по визуально-измерительному контролю не превышает 7 %, а по ультразвуковому контролю - не превышает 2 % от общего числа «упоров» на конструкции.

Результаты операционного контроля регистрируют в исполнительной документации (п.6.4. настоящего стандарта).

Приемочный контроль

6.26. Приёмочный контроль качества приварки «упоров» выполняют на каждом элементе (отправочной марке, монтажном блоке и др.) или на каждом участке, на котором выполняли сварку «упоров» после монтажа конструкции.

Приемочный контроль включает визуально-измерительный и ультразвуковой контроль.

6.27. Визуально-измерительный контроль в объёме 100 % включает проверки:

- соответствие количества и размещения «упоров» требованиям проекта и настоящего стандарта (см.табл.5.1 и 6.1);
- качества формирования кольцевых валиков;
- полноты и качества выполнения ремонта «упоров», имеющих дефекты формирования кольцевого валика;

Проверку высоты «упоров» согласно п. 1.4 табл. 6.1 настоящего стандарта выполняют в объеме 20%.

6.28. Ультразвуковой контроль выполняют после визуально-измерительного контроля в объеме, указанном в табл 6.2.

Ультразвуковой контроль сварных соединений «упоров» выполняют на каждом элементе. Контролю подвергают «упоры» в пропорциональном количестве в начале, середине и конце предъявленного к приёмке элемента (отправочной марки, монтажного блока и др.). В первую очередь ультразвуковому контролю подлежат «упоры», которые по результатам визуально-измерительного контроля не соответствуют п. 1.4 табл. 6.1.

При объеме контроля 20% (см. табл. 6.2) в случае обнаружения дефектов более чем в $10\,\%$ от числа проверенных сварных соединений «упоров» (т.е. более чем в $2\,\%$ от общего числа «упоров» на элементе) ультразвуковому контролю подвергают все «упоры» на данном элементе

6.29. Ультразвуковой контроль производят на основании технологических инструкций, разработанных для конкретных типоразмеров «упоров», толщины проката, к которому приварены «упоры», и модели применяемого дефектоскопа.

При ультразвуковом контроле подлежат выявлению дефекты, расположенные в любом месте сечения шва и имеющие площадь проекции на горизонтальную плоскость более 5 % плошади сечения шва.

Контроль следует производить со стороны головки «упора».

Для обеспечения нормальных условий работы дефектоскописта и аппаратуры, обуславливающих достоверность результатов контроля, последний должен проводиться при температуре окружающего воздуха не ниже +5 °C.

- 6.30. Визуально-измерительный и ультразвуковой контроль дополнительных «упоров», приваренных при ремонте, следует проводить в объёме 100 %.
- 6.31. Окончательная приёмка представителем службы технического контроля организации, осуществляющей сварочные работы, и представителем независимой контролирующей организации производится после завершения ремонта и ультразвукового контроля (до окраски или бетонирования конструкции).

Результаты приёмочного контроля оформляют актами приёмки или другой документацией, предусмотренной заказчиком.

7. РЕМОНТ СВАРНЫХ СОЕДИНЕНИЙ «УПОРОВ»

- 7.1. Ремонту подлежат «упоры», имеющие дефекты:
- отсутствие валика шва на длине не более 25 % длины окружности «упора», если в этой зоне отсутствуют трещины или острые подрезы;

- отклонение от вертикали на величину не более 10 мм, измеренной на высоте 100 мм от поверхности листа.
- 7.2. Ремонг «упоров» с частичным отсутствием валика шва следует выполнять наложением сварного углового шва на дефектном участке. Ремонт выполняют ручной дуговой сваркой электродами УОНИ 13/55 диаметром 3 мм на сварочном токе не более 110 А.

При этом катет углового шва должен быть не менее 4 мм, а границы дефектного участка должны быть перекрыты на величину 5...10 мм. Угловой шов не должен иметь подрезов, пор, шлаковых включений. Плавный переход не требуется. Наплывы в начале шва и кратеры в конце шва не являются браковочными признаками и не исправляются.

- 7.3. Исправление отклонения «упора» от вертикали в пределах, указанных в п. 7.1, разрешается ударами молотка, без термического нагрева.
- 7.4. Участки конструкции, имеющие «упоры», приваренные с недопустимыми дефектами по табл. 6.1. и п.7.1, подлежат усилению.

Усиление участков конструкции выполняют приваркой дополнительных «упоров» в количестве. соответствующем количеству дефектных «упоров». Приварку дополнительных «упоров» выполняют с применением специализированных сварочных установок.

Дополнительные «упоры» следует приваривать на место удаленных дефектных «упоров» либо вблизи дефектных «упоров» на расстоянии не менее 2,0D_{упора} в свету без удаления дефектных.

«Упоры» удаляют ручной газовой резкой. Места приварки удаленных «упоров» должны быть зачищены абразивным инструментом заподлицо с основным металлом. Приварку дополнительного «упора» на место дефектного допускается производить не более одного раза.

- 7.5. В случае если в дополнительном «упоре» будут также обнаружены недопустимые дефекты, то следует приварить второй дополнительный «упор». Если и во втором дополнительном «упоре» также будут обнаружены дефекты, дальнейшее усиление участка конструкции разрешается не производить.
- 7.6. В условиях монтажа при отсутствии специализированного сварочного оборудования по согласованию с проектной организацией допускается взамен «упоров», оторванных или погнутых при транспортировке и кантовке элементов приваривать новые «упоры» ручной дуговой сваркой.

В случаях, когда при отрыве старого «упора» в основном металле конструкции образовались повреждения (выхваты, трещины и т.п.), новые «упоры» следует располагать вблизи дефектного места на расстоянии не менее 2,0D_{упора} в свету. Повреждённое место должно быть зачищено абразивным инструментом и отремонгировано ручной дуговой сваркой в соответствии с СТП 005-97.

Погнутые «упоры» допускается удалять и на это место приваривать новые «упоры» с учетом требований п.7.4.

7.7. При ручной сварке «упор» должен плотно, без зазора опираться рабочим торцом на поверхность конструкции. Для этого ионизирующий наконечник на рабочем торце «упора» удаляют.

Сварку кольцевого шва следует выполнять электродами УОНИ 13/55 диаметром 3 мм на сварочном токе не более 110 А. Катет кольцевого шва следует принимать равным 0,25 D_{ynopa} , но не менее 5 мм. Качество кольцевого шва должно соответствовать СТП 005-97.

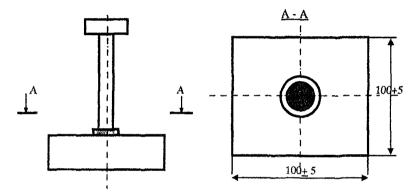
ХАРАКТЕРНЫЕ ДЕФЕКТЫ, ПРИЧИНЫ ИХ ОБРАЗОВАНИЯ И СПОСОБЫ УСТРАНЕНИЯ

Таблица А.1 Вид дефекта Корректирующее Вероятная причина воздействие Дефекты, выявленные при визуальном осмотре сварного соединения 1. Кольцевой валик шва имеет обычный вид, яркий цвет и замкнут. Длина «упора» после свар-Правильные параметры ки в пределах допуска. Не требуется сварки Проверить центровку 2. Уменьшенный диаметр Нелостаточная величикерамического кольца от-«упора» в районе сварного на осадки «упора» в металл носительно «упора» и сра-Слишком большая батывание механизма ma. длина «упора». полъема Нелостаточная величи-• Увеличить на подъёма «упора» от пояглубину са при сварке. осадки «упора». Слишком высокий сва-Уменьшить силу сварочный ток. рочного тока и/или время горения дуги. 3. Малые размеры кольцевого валика шва, необыч-Увеличить сварочный ная форма, серый цвет. Слишком низкий сваток и/или время горения Слишком большая длина рочный ток. дуги. «упора». Керамическое Прокалить кольца в пекольцо чи при температуре 900 °C влажное. в течение 1 ч. 4. Кольцевой валик шва несимметричный, не замк-Влияние • Применять магнитного меры ПО нут. Есть подрезы. дутья. предупреждению магнит-Неправильная центровного дутья. Проверить ка керамического кольца центровку (термическое дутье). керамического кольца.

продолжение табл. А							
1	2	3					
5. Уменьшенная высота кольцевого валика шва, яркий цвет, большое разбрызгивание. Значительное уменьшение длины «упора» после сварки.	• Слишком высокий сварочный ток • Слишком высокая скорость погружения (низкая степень демпфирования).	• Уменьшить силу тока и/или время горения дуги. • Отрегулировать скорость погружения путём изменения степени демпфирования на сварочном пистолете.					
Дефекты, в	ыявленные при механических	испытаниях					
6. Разрушение по металлу «упора», в том числе вбли- зи кольцевого валика шва	Параметры сварки верные	Не требуется					
7. Разрушение по сварному шву. Большое количество пор в изломе.	• Слишком низкий сварочный ток. • Плохая свариваемость металла «упора» и пояса.	 Увеличить силу тока и/или время горения дуги. Проверить химический состав «упора» и основного металла. 					
8. Разрушение по зоне термического влияния. Серая изломанная поверхность без значительной деформации (хрупкий кристаллический излом).	• Слишком высокое со- держание углерода в ме- талле «упора» или пояса. • Основной металл не от- вечает требованиям.	 Проверить основной металл. Увеличить время горения дуги. Применять предварительный подогрев. 					
9. Разрушение по зоне термического влияния. Яркий серебристый цвет излома. Поры.	 Слишком высокое со- держание алюминия. Слишком короткое вре- мя сварки. Металл «упора» не от- вечает требованиям. 	 Проверить алюминие- вый наконечник. Увеличить время горе- ния дуги. 					

СТП 015-2001

продолжение табл. А.1


продолжение таол. А							
1	2	3					
10. Слоистые трещины в изломе основного металла (ступенчатый излом).	 Неметаллические включения в основном металле. Некачественный основной металл. 	• Проверить основной металл					
11. Несплавление «упора» с основным металлом по периметру. Чрезмерно большая высота «упора»	 Малая скорость осадки «упора». Высокая степень демпфирования. Ослаблена возвратная пружина Повреждение направляющих. 	 Проверить исправность сварочного пистолета. Проверить настройки сварочного пистолета. 					
12. То же, что и п. 11, но высота «упора» нормальная	• Слишком высокая ско- рость осадки «упора»	• Проверить степень демпфирования					

ИСПЫТАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОБ

Б.1. Испытания технологических проб производят на контрольных образцах. Пластины для контрольных образцов изготавливают из проката наибольшей толщины, применяемого в элементах конструкции с «упорами».

При использовании в элементах конструкции различных марок низколегированных или микролегированных сталей и/или сталей с разным классом прочности для образцов следует применять микролегированную сталь, а также сталь наименьшего класса прочности.

Б.2. Для испытаний изготавливают 17 контрольных образцов (рис. Б.1). Размер пластин принимают не менее 100×100 мм. «Упор» приваривают по центру пластины.

Рис, Б.1. Контрольный образеи

Б.3. Контрольные образцы подвергают ультразвуковому контролю в объеме 100 %.

Если по результатам ультразвукового контроля более 3 соединений «упоров» из изготовленной партии контрольных образцов имеют недопустимые внутренние дефекты, то режимы сварки «упоров» признают непригодными, не обеспечивающими стабильное качество сварных соединений. Изготовленную партию контрольных соединений бракуют. Режимы сварки корректируют.

Если по результатам ультразвукового контроля число дефектных образцов не превышает трёх, эти образцы отделяют от основной партии. Для испытаний дополнительно изготавливают контрольные образцы и производят их ультразвуковой контроль.

Б.4. Контрольные образцы подвергают следующим испытаниям:

на прочность.

- на ударный загиб образцов без надреза;
- на статический отрыв;

на свариваемость:

• измерение твёрдости зон сварного соединения;

на дефектность:

- на ударный загиб образцов с надрезом;
- Б.5. Испытание технологических проб на ударный загиб производят на 5 образцах. «Упоры» загибают на угол не менее 60 от вертикали.

«Упоры» загибают ударами кувалды весом 5 кг по головке «упора» или рычагом. При использовании для загиба рычага головку «упора» срезают и рычаг одевают на «упор» таким образом, чтобы торец рычага был на 15 мм выше кольцевого валика. Внутренний диаметр рычага должен быть больше диаметра «упора» не более чем на 10 мм.

Испытания считают выдержанными, если при загибе «упора» на 60^0 от вертикали в сварном шве или околошовной зоне нет видимых надрывов или трещин.

Б.б. Испытания на статический отрыв проводят на 5 образцах. Испытания проводят на статических прессах с использованием приспособления, приведенного на рис. Б.2 и Б.3.

Испытания считают выдержанными, если временное сопротивление отрыву при разрушении соединения по телу «упора» или по сварному шву не ниже 450 МПа.

Б.7. Испытания на ударный загиб образцов с надрезом проводят с целью оценки количества дефектов и вида разрушения сварного шва. Испытания проводят на 5 образцах.

Перед испытаниями в уровне поверхности металла основания с обеих сторон «упора» фрезой диаметром 2 мм делают надрезы на глубину 2 мм от поверхности «упора» (см. рис. Б.4).

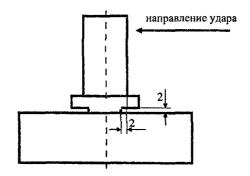


Рис. Б.4. Надрез при испытаниях упора

Ударами кувалды весом 5 кг в направлении со стороны одного из надрезов доводят сварное соединение «упора» до разрушения и выполняют оценку внутренних дефектов, их вида и количества.

Оценивается суммарная площадь дефектов, попавших в зону излома. При этом размеры и количество дефектов не должны превышать величин, указанных в табл. Б.2.

						I ao	лица ь.2
Диаметр дефекта, мм	1.0	1.5	2.0	2.5	3.0	3.5	4.5
Колпчество дефектов	22	11	6	4	3	2	1

Примечание. Поры размером до 0.5 мм игнорируются.

Результаты испытаний считают удовлетворительными, если суммарная площадь дефектов в изломе не превышает 5% площади сечения «упора», а сам излом имеет волокнистый характер. Испытания также считают выдержанными, если не произошло разрушение сварного соединения.



Рис. Б.2.Схема испытаний на статический отрыв

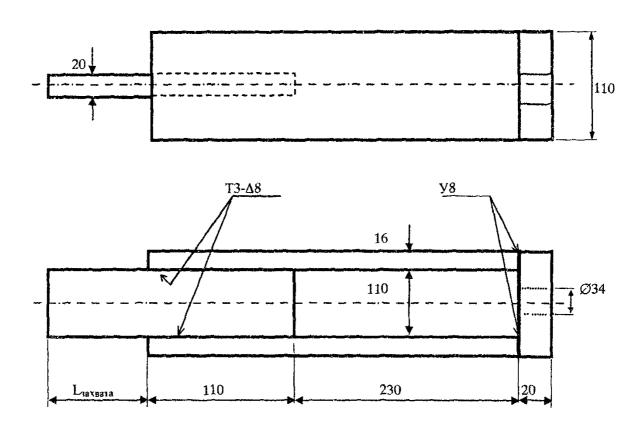


Рис. Б.З. Приспособление для испытания на статический отрыв

Б.8. Макрошлифы для определения твёрдости металла шва и околошовной зоны изготавливают из 2 образцов разрезанием их вдоль продольной оси «упора».

По макрошлифам проверяют наличие в сварном шве несплавлений и пор, суммарная протяженность которых не должна превышать 20 % диаметра «упора».

Твёрдость измеряют по направлениям, указанным на рис. Б.5:

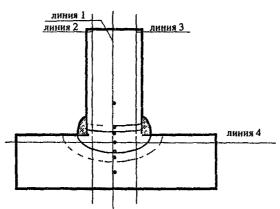


Рис. Б.5. Измерения твёрдости упора

Замеры следует производить по оси «упора» (линия 1), по периферии «упора» на расстоянии 0,5...1,0 мм от боковой поверхности «упора» (линии 2 и 3) и по листовому прокату на расстоянии 0,5...1,0 мм от поверхности проката (линия 4). Шаг измерений: по вертикальным осям (линии 1, 2 и 3) – 0,5 мм; по горизонтальной оси (линия 4) – в 3TB - 0,5 мм, в металле шва – 1,0 мм. При измерениях должны быть получены значения твёрдости: в зоне основного металла «упора» и листового проката; на линии сплавления металла шва с металлом листового проката и «упора»; металла шва; зон термического влияния со стороны «упора» и листового проката.

Измерение твёрдости производят по шкале Виккерса на нагрузках 5 или 10 кгс по ГОСТ 2999. Шероховатость измеряемой поверхности макрошлифов образцов должна быть не ниже R_a (0,4...0,8).

Твёрдость сварного шва и околошовной зоны не должна превышать 350 HV.

Б.9. Химический анализ металла «упоров» производят по ГОСТ 12344...12365, ГОСТ 18895, ГОСТ 22536.0...22536.12, ГОСТ 27809, ГОСТ 28473. Допускается применение других методов, обеспечивающих необходимую точность анализа. При возникновении разногласий применяют стандартные методы, указанные в настоящем стандарте.

При химическом анализе определяют массовую долю содержания углерода, кремния, марганца, серы, фосфора.

Для партий «упоров», при входном контроле которых проводился химический анализ, повторную проверку химсостава при испытании технологических проб не проводят.

Б.10. Для материала «упора» проверяют следующие механические характеристики:

- предел текучести;
- временное сопротивление;
- относительное удлинение;
- ударную вязкость КСИ и КСV.

CTII 015-2001

Прочностные и пластические характеристики определяют при испытаниях на статическое растяжение по ГОСТ 1497 цилиндрических образцов типа III.6. Испытанию подвергают не менее 3 образцов.

Ударную вязкость определяют при испытаниях по ГОСТ 9454 образцов типа 1 при температуре минус 40 С и минус 60 С (факультативно) и образцов типа 3 при температуре минус 20 С. Испытанию подвергают не менее 3 образцов.

Все образцы для испытания механических свойств вырезают из центральной части «упоров».

Приложение В (обязательное)

Форма рабочего журнала ультразвукового контроля сварных соединений «упоров»

N ₂	Дага контроля	Тип и номер дефекто- скопа и ПЭП	Марка эле- мента	Количество основных «упоров»	Количество «упоров» с формиро- вания	основных дефектами внутрен- ними	Количество дополни- тельных «упоров»	тельных «уг	о дополни- поров» с де- гами внутрев- ними	Заключение о качестве эле- мента (го- ден/не годен)	Фамилня и подпись де- фектоскопи- ста
\vdash	2	3	4	5	6	7	8	9	10	11	12
1 1											
1 1											
							L				