

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ОПРЕДЕЛЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ИЗ РЕЗЕРВУАРОВ

с дополнениями НИИ Атмосфера

1999

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ОПРЕДЕЛЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ИЗ РЕЗЕРВУАРОВ

с дополнениями НИИ Атмосфера

1999

СВЕДЕНИЯ О ДОКУМЕНТЕ

РАЗРАБОТАН	Казанским управлением «Оргнефтехимзаводы», г. Казань
	Начальник Ф.Ф. Мухаметшин
	МП «БЕЛИНЭКОМП», г. Новополоцк
	Директор Б.Ш. Иофик
	АОЗТ «ЛЮБЭКОП», г. Москва
	Генеральный директор Ю.А. Мазель
ВНЕСЕН	Управлением государственного экологического контроля и эколо-
	гической безопасности окружающей среды
СОГЛАСОВАН	Научно-исследовательским институтом по охране атмосферного
	воздуха
УТВЕРЖДЕН	приказом Госкомэкологии России N от
ВКЛЮЧЕН	в «Перечень Методических документов по расчету выделений вы-
	бросов) загрязняющих веществ в атмосферу».
ВВЕДЕН	в действие с 01.01.1998 г. сроком на 2 года для практического при-
	менения при учете и оценке выбросов загрязняющих веществ в ат-
	мосферу из резервуаров для хранения нефтепродуктов на приятиях
	различных отраслей промышленности и сельского хозяйства Рос-
	сийской Федерации.

Настоящий документ не может быть тиражирован и распространен в качестве официального издания без письменного разрещения разработчика.

СОДЕРЖАНИЕ

BI	ВЕД	ЕНИЕ	***************************************	***************************************	***************************************	***************************************	7
1.	CC	СЫЛК	И НА НОРМ	ІАТИВНЫЕ ДО	КУМЕНТЫ	••••••	7
2.	o	CHOBI	ные овозі	RИНЭРАН	•••••		8
3.	TE	РМИ	ны и опре	деления	••••••		9
4.	OI	БЩИЕ	положен	киз			9
ΡF	E3E1	РВУАН	ОВ ПЕРЕР	АБАТЫВАЮШ	ИХ, НЕФТЕ	ГМОСФЕРУ ИЗ ДОБЫВАЮЩИ РОВОДОВ	X 11
:	5.1	исхо	ОДНЫЕ ДАН	НЫЕ ДЛЯ РАСЧ	ІЕТА ВЫБРО	СОВ	11
		5.1.1	ДАННЫЕ Г	ІРЕДПРИЯТИЯ			11
		5.1.2	ИНСТРУМ	ЕНТАЛЬНЫЕ И	КИНЗЧЭМЕ		11
						ПАРОВ ИНДИВИ	
		5.1.4	РАСЧЕТ ДА	АВЛЕНИЯ ГАЗС	В НАД ИХ В	ОДНЫМИ РАСТ	ВОРАМИ 13
		5.1.5	ОПРЕДЕЛЕ	ЕНИЕ МОЛЕКУ.	ОАМ ЙОНЧКІ	ССЫ ПАРОВ ЖИ	ДКОСТЕЙ. 13
		5.1.6	ОПРЕДЕЛЕ	ЕНИЕ ОПЫТНЫ	х значениі	й коэффициен	łтов К _t 13
		5.1.7	ОПРЕДЕЛЕ	ЕНИЕ ОПЫТНЫ	Х ЗНАЧЕНИЇ	ІЗИДИФФСОЯ Й	НТОВ К _Р 14
		5.1.8	ОПРЕДЕЛЕ	ЕНИЕ ЗНАЧЕНИ	ТИФФСОЯ Й	ЦИЕНТОВ К _в	15
		5.1.9	ОПРЕДЕЛЕ	ЕНИЕ ОПЫТНЫ	Х ЗНАЧЕНИЇ	й коэффициеі	НТОВ К _{об} 15
	5.2	выы	ОСЫ ПАРО	В НЕФТЕЙ И БІ	НЗИНОВ		16

5.3	ВЫБРОСЫ ПАРОВ ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ17	
5.4 HOI	ВЫБРОСЫ ПАРОВ МНОГОКОМПОНЕНТНЫХ ЖИДКИХ СМЕСЕЙ ИЗВЕСТ- ТО СОСТАВА	
5.5	ВЫБРОСЫ ГАЗОВ ИЗ ВОДНЫХ РАСТВОРОВ	
5.6	ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ (КРОМЕ БЕНЗИНОВ) 19	
	ЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ В АТМОСФЕРУ ИЗ РВУАРОВ НЕФТЕБАЗ, ТЭЦ, КОТЕЛЬНЫХ, СКЛАДОВ ГСМ20	
6.1	ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ВЫБРОСОВ	
6.2	ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ20	
	ЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ В АТМОСФЕРУ ИЗ РВУАРОВ АВТОЗАПРАВОЧНЫХ СТАНЦИЙ21	
7.1	ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ВЫБРОСОВ	
7.2	ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ21	
	РИМЕРЫ РАСЧЕТА ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТ- ФЕРУ	23
8.1	НПЗ. БЕНЗИН-КАТАЛИЗАТ. ВАЛОВЫЕ ВЫБРОСЫ	
8.2 OTC	НПЗ. БЕНЗИН АВТОМОБИЛЬНЫЙ. ВАЛОВЫЕ ВЫБРОСЫ. ССВ - ПОНТОН И СУТСТВИЕ ССВ	
8.3	НПЗ. БЕНЗИН АВТОМОБИЛЬНЫЙ. ИДЕНТИФИКАЦИЯ ВЫБРОСОВ 26	
8.4	НПЗ. КЕРОСИН ТЕХНИЧЕСКИЙ	
8.5	РАСТВОРИТЕЛЬ № 646. ВЫБРОСЫ КОМПОНЕНТОВ	
8.6	НЕФТЕБАЗА. БЕНЗИН АВТОМОБИЛЬНЫЙ. ВАЛОВЫЕ ВЫБРОСЫ	

8.7	АЗС. БЕНЗИН АВТОМОБИЛЬНЫЙ. ВАЛОВЫЕ ВЫБРОСЫ 30
8.8	ТЭЦ. МАЗУТ ТОПОЧНЫЙ (РЕЗЕРВУАР С НИЖНИМ БОКОВЫМ ПОДОГРЕВОМ) 31
8.9	ТЭЦ. МАЗУТ ТОПОЧНЫЙ (РЕЗЕРВУАР БЕЗ ОБОГРЕВА)
испо	ЛЬЗУЕМАЯ ЛИТЕРАТУРА
прил	ожения
вочн	РЕДЕЛЬНО ДОПУСТИМЫЕ КОНЦЕНТРАЦИИ (ПДК) И ОРИЕНТИРОЬЫЕ БЕЗОПАСНЫЕ УРОВНИ ВОЗДЕЙСТВИЯ (ОБУВ) ЗАГРЯЗНЯЮВЕЩЕСТВ В АТМОСФЕРНОМ ВОЗДУХЕ НАСЕЛЕННЫХ МЕСТ
	ИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ГАЗОВ И ЖИДКОС 34
ПЗ. КС	ОНСТАНТЫ УРАВНЕНИЯ АНТУАНА НЕКОТОРЫХ ВЕЩЕСТВ 35
П4. ЗН ГАЗОІ	АЧЕНИЯ ПОСТОЯННОЙ К $_\Gamma$ ДЛЯ ВОДНЫХ РАСТВОРОВ НЕКОТОРЫХ З (В ТАБЛИЦЕ ДАНЫ ЗНАЧЕНИЯ К $_\Gamma$ ·10 9 В мм.рт.ст.)36
	АЧЕНИЯ МОЛЕКУЛЯРНОЙ МАССЫ ПАРОВ (М) НЕФТЕЙ И БЕНЗИ-
П6. АТ	томные массы некоторых элементов
П7. ЗН	АЧЕНИЯ ОПЫТНЫХ КОЭФФИЦИЕНТОВ К,
П8. ЗН	АЧЕНИЯ ОПЫТНЫХ КОЭФФИЦИЕНТОВ Кр
П9. ЗН	АЧЕНИЯ КОЭФФИЦИЕНТОВ К _в 40
П10. 3	НАЧЕНИЯ ОПЫТНЫХ КОЭФФИЦИЕНТОВ К _{об} 40
	ОМПОНЕНТНЫЙ СОСТАВ РАСТВОРИТЕЛЕЙ, ЛАКОВ, КРАСОК И Т.Д. МАССОВЫЙ)40

П12. ЗНАЧЕНИЯ КОНЦЕНТРАЦИЙ ПАРОВ НЕФТЕПРОДУКТОВ В РЕЗЕРВУАРЕ С1, УДЕЛЬНЫХ ВЫБРОСОВ \mathbf{y}_2 , \mathbf{y}_3 И ОПЫТНЫХ КОЭФФИЦИЕНТОВ \mathbf{K}_{HI}
П13. КОЛИЧЕСТВО ВЫДЕЛЯЮЩИХСЯ ПАРОВ БЕНЗИНОВ
АВТОМОБИЛЬНЫХ ПРИ ХРАНЕНИИ В ОДНОМ РЕЗЕРВУАРЕ \mathbf{G}_{xp} , Т/ГОД 45
П14. КОНЦЕНТРАЦИЯ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ (% МАСС.) В ПАРАХ РАЗЛИЧНЫХ НЕФТЕПРОДУКТОВ [12]
П15. КОНЦЕНТРАЦИИ ПАРОВ НЕФТЕПРОДУКТОВ (С, Г/М³) В ВЫБРОСАХ ПАРОВОЗДУШНОЙ СМЕСИ ПРИ ЗАПОЛНЕНИИ РЕЗЕРВУАРОВ И БАКОВ АВТОМАШИН
П16. ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ УГЛЕВОДОРОДОВ, ПА 48
9. ДОПОЛНЕНИЕ К «МЕТОДИЧЕСКИМ УКАЗАНИЯМ ПО ОПРЕДЕЛЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ИЗ РЕЗЕРВУ- APOB»
ВВЕДЕНИЕ 49
1 ПРИМЕНЕНИЕ КРИТЕРИЕВ КАЧЕСТВА АТМОСФЕРНОГО ВОЗДУХА 50
2. ДАННЫЕ О СОДЕРЖАНИИ ВРЕДНЫХ ВЕЩЕСТВ В ПАРАХ НЕФТЕПРО- ДУКТОВ РАЗНОГО ВИДА51
3. РАСЧЕТ МАКСИМАЛЬНЫХ И ВАЛОВЫХ ВЫБРОСОВ ПАРОВ НЕФТЕ- ПРОДУКТОВ В АТМОСФЕРУ
4. ПРИМЕРЫ РАСЧЕТА ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТ- МОСФЕРУ (ДОПОЛНЕНИЯ И УТОЧНЕНИЯ)54
5. РЕДАКЦИОННЫЕ УТОЧНЕНИЯ

ВВЕДЕНИЕ

1.1. Настоящий документ:

Разработан с целью создания единой методологической основы по определению выбросов загрязняющих веществ в атмосферу из резервуаров на действующих, проектируемых и реконструируемых предприятиях;

Устанавливает порядок определения выбросов загрязняющих веществ из резервуаров для хранения нефтепродуктов расчетным методом, в том числе и на основе удельных показателей выделения;

Распространяется на источники выбросов загрязняющих веществ нефте- и газоперерабатывающих предприятий, предприятий по обеспечению нефтепродуктами (нефтебазы, склады горюче-смазочных материалов, магистральные нефтепродуктопроводы, автозаправочные станции), тепловых электростанций (ТЭЦ), котельных и других отраслей промышленности;

Применяется в качестве основного методического документа предприятиями и территориальными комитетами по охране природы, специализированными организациями, проводящими работы по нормированию выбросов и контролю за соблюдением установленных нормативов ПДВ.

Полученные по настоящему документу результаты используются при учете и нормировании выбросов загрязняющих веществ от источников предприятий, технологические процессы которых связаны с хранением нефтепродуктов в резервуарах различных типов, а также в экспертных оценках для определения экологических характеристик подобного оборудования.

1. ССЫЛКИ НА НОРМАТИВНЫЕ ДОКУМЕНТЫ

Методические указания разработаны в соответствии со снедующими нормативными документами:

- 1. ГОСТ 17.2.1.04-77. Охрана природы. Атмосфера. Источники и метеорологические факторы загрязнения, промышленные выбросы. М., Изд-во стандартов, 1978.
- 2. ГОСТ 17.2.3.02-78. Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями. М., Изд-во стандартов, 1980.
- 3. ГОСТ 17.2.4.02-81. Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ. М., Изд-во стандартов, 1982.
 - 4. ГОСТ 8.563-96. Методика выполнения измерений. М., Изд-во стандартов, 1996.

2. ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

М - максимальные выбросы загрязняющих веществ в атмосферу, г/с;

G - годовые выбросы загрязняющих веществ в атмосферу, т/год;

 V_{v}^{max} - максимальный объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки, принимаемый равным производительности насоса, м³/час;

 Q_{03} - количество нефтепродуктов, закачиваемое в резервуары A3C в течение осенне-зимнего периода года, м³/период;

 Q_{BR} - то же, в течение весенне-летнего периода, м³/период;

В - количество жидкости, закачиваемое в резервуары в течение года, т/год;

 B_{03} - то же, в течение осенне-зимнего периода, т/период;

Ввл - то же, в течение весенне-летнего периода, т/период;

t_{нк} - температура начала кипения жидкости, °С;

 $t_{\mathbf{w}}^{\text{max}}$, $t_{\mathbf{w}}^{\text{min}}$ - максимальная и минимальная температура жидкости в резервуаре, °C;

 $\rho_{\rm w}$ - плотность жидкости, т/м³;

 τ_1 , τ_2 - время эксплуатации резервуара соответственно, сут/год и час/сут;

 P_{38} - давление насыщенных паров нефтей и бензинов при температуре 38°C и соотношении газжидкость 4:1, мм.рт.ст.;

 C_{20} - концентрация насыщенных паров нефтепродуктов (кроме бензина) при температуре 20°C и соотношении газ-жидкость 4:1, г/м³;

Р_t- давление насыщенных паров индивидуальных веществ при температуре жидкости, мм.рт.ст.;

p_i - парциальное давление пара индивидуального вещества над многокомпонентным раствором, в равновесии с которым он (пар) находится, Па или мм.рт.ст.

А,В,С- константы в уравнении Антуана для расчета равновесного давления пасыщен-

ных паров жидкости;

 K_r - константа Генри для расчета давления газов над водными растворами, мм.рт.ст.;

 K_t , K_p , K_s , K_{ob} , K_{hii} - коэффициенты;

Хі - массовая доля вещества;

т - молекулярная масса паров жидкости;

 V_p - объем резервуара, м³;

N_n - количество резервуаров, шт.;

Сі - концентрация і-го загрязняющего вещества, % масс.;

 C_1 - концентрация паров нефтепродукта в резервуаре, г/м³;

 y_2 , y_3 - средние удельные выбросы из резервуара соответственно в осенне-зимний весенне-летний периоды года, г/т;

 G_{xp} - выбросы паров нефтепродуктов при хранении бензина автомобильного в одном резервуаре, т/год;

 V_{cn} - объем слитого нефтепродукта в резервуар АЗС, M^3 ;

 C_p - концентрация паров нефтепродуктов при закачке в резервуар АЗС, г/м 3 ;

 C_6 - то же в баки автомащин, г/м³;

 $G_{3a\kappa}$ - выбросы паров нефтепродуктов при закачке в резервуары АЗС и в баки автомащин, т/год;

G_{пр} - неорганизованные выбросы паров нефтепродуктов при проливах на АЗС, т/год.

3. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Термины	Определения
Загрязнение атмосферы	Изменение состава атмосферы в результате паличия в ней примеси.
Загрязняющее воздух вещество	Примесь в атмосфере, оказывающая неблагоприятное действие на окружающую среду и здоровье людей.
Выброс вещества	Вещество, посгупающее в атмосферу из источника примеси.
Концентрация примеси в атмосфере	Количество вещества, содержащееся в единице массы или объема воздуха, приведенного к нормальным условиям
Предельно-допустимая концентрация примеси в агмосфере	Максимальная концентрация примеси в атмосфере, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает на него вредного действия, и на окружающую среду в целом.
Ориентировочно безопасный уровень воздействия загрязняющего агмосферу вещества (ОБУВ)	Временный гигиенический норматив для загрязняющего атмосферу вещества, устанавливаемый расчетным методом для целей проектирования промышленных объектов.

4. ОБЩИЕ ПОЛОЖЕНИЯ

- 4.1. Разработка настоящего документа проведена исходя из определения термина «унификация» приведение имеющихся путей расчета выбросов от однотипных резервуаров на действующих, проектируемых и реконструируемых предприятиях в пределах массива существующих методик к наибольшему возможному единообразию.
- 4.2. В документе приведены справочно-информационные и экспериментальные данные о физико-химических свойствах, концентрациях и величинах удельных выбросов из резервуаров для хранения наиболее распространенных индивидуальных веществ и многокомпонентных технических смесей, применяемых в нефтехимической, нефтеперерабатывающей и других отраслях промышленности, а также расчет-

ные формулы для определения максимальных (r/c) и валовых (t/r) выбросов соответствующих загрязняющих веществ.

- 4.3. По данной методике могут выполняться расчеты выделений (выбросов) загрязняющих веществ:
- **п** для нефти и низкокипящих нефтепродуктов (бензин или бензиновые фракции) суммы предельных углеводородов C_1 - C_{10} и непредельных C_2 - C_5 (в пересчете на C_5) и ароматических углеводородов (бензол, толуол, этилбензол, ксилолы);
- для высококипящих нефтепродуктов (керосин, дизельное топливо, масла, присадки и т.п.) суммы углеводородов C_{12} - C_{19} .
- 4.4. Расчеты ПДВ (ВСВ) в атмосферу от резервуаров с нефтями и бензинами выполняются с учетом разделения их на группы веществ:
 - •углеводороды предельные алифатические ряда $C_1\text{-}C_{10}$ (в пересчете на пентан*);
 - •углеводороды непредельные С2-С5 (в пересчете на амилен);
 - •бензол, толуол, этилбензол, ксилолы;
 - •сероводород.

Остальные технические смеси (дизельное топливо, печное и др., мазут) не имеют ПДК (ОБУВ). Поэтому, выбросы от этих продуктов временно принимаются как «углеводороды предельные C_{12} - C_{19} ». Значения ПДК и ОБУВ ряда веществ и технических смесей представлены в Приложении 1.

- 4.5. Индивидуальный состав нефтепродуктов определяется по данным заводаизготовителя (техническому паспорту) или инструментальным методом.
- 4.6. Только для случаев недостаточности информации для расчета по данной методике, а также, когда источник загрязнения не охватывается разделами настоящего документа, рекомендуется руководствоваться отраслевыми методиками, включенными в «Перечень...» [1].

^{*)} Примечание: до утверждения ОБУВ для C_1 - C_5 и C_6 - C_{10}

5. ВЫБРОСЫ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ИЗ РЕЗЕР-ВУАРОВ ПЕРЕРАБАТЫВАЮЩИХ, НЕФТЕДОБЫВАЮЩИХ ПРЕДПРИЯТИЙ И МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

5.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ВЫБРОСОВ

5.1.1. ДАННЫЕ ПРЕДПРИЯТИЯ

По данным предприятия принимаются:

- максимальный объем паровоздушной смеси, вытесняемой из резервуара (группы одноцелевых резервуаров) во время его закачки (V_{ν}^{max} м³/час), равный производительности насоса;
- количество жидкости, закачиваемое в резервуары в течение года (В, т/год) или иного периода года;
 - температура начала кипения (t_{нк}, °C) нефтей и бензинов;
 - плотность (ρ_{w} , τ/m^{3}) нефтей и нефтепродуктов;
- время эксплуатации резервуара или групп одноцелевых резервуаров (τ_1 , сут/год, τ_2 , час/сут);
- давления насыщенных паров нефтей и бензинов (P₃₈, мм.рт.ст.) определяются при температуре 38° С и соотношении газ-жидкость 4:1.

Примечание. Для нефтеперерабатывающих заводов и других крупных предприятий давление насыщенных паров целесообразно определять газохроматографическим методом.

Физико-химические свойства некоторых газов и жидкостей представлены в приложении 2.

5.1.2. ИНСТРУМЕНТАЛЬНЫЕ ИЗМЕРЕНИЯ

Температуру жидкости измеряют при максимальных ($t_{\mathscr{H}}^{\max}$, °C) и минимальных ($t_{\mathscr{H}}^{\min}$, °C) ее значениях в период закачки в резервуар.

Идентификацию паров нефтей и бензинов (С₁, % масс.) по группам углеводородов и индивидуальным веществам (предельные, непредельные, бензол, толуол, этилбензол, ксилолы и сероводород) необходимо проводить для всех вышеуказанных предприятий. Углеводородный состав определяют газохроматографическим методом, а сероводород - фотометрическим [2 - 4].

Концентрации насыщенных паров различных нефтепродуктов (кроме бензина) при 20° С и соотношении газ-жидкость 4:1 (C_{20} , г/м 3) определяются газохроматографическими методами [3 - 4] специализированными подразделениями или организациями, имеющими аттестат аккредитации и, при необходимости, соответствующие лицензии.

5.1.3. РАСЧЕТ ДАВЛЕНИЯ НАСЫЩЕННЫХ ПАРОВ ИНДИВИДУАЛЬНЫХ ЖИДКОСТЕЙ

Давления насыщенных паров индивидуальных жидкостей при фактической температуре (P_t , мм.рт.ст.) определяются по уравнениям Антуана:

$$P_{t} = 10^{\hat{}} \left(A - \frac{B}{273 + t_{w}} \right) \tag{5.1.1}$$

или

$$P_{t} = 10^{\hat{}} (A - \frac{B}{C + t_{w}}) \tag{5.1.2}$$

где: A, B, C - константы, зависящие от природы вещества, для предприятий нефтепереработки принимаются по приложению 3, а для предприятий иного профиля - по справочным данным, например, «Справочник химика» т.1. Л. «Химия», 1967.

Кроме того, давление насыщенных паров жидкостей можно принимать и по но-мограммам $P_t = f(t_*)$, например, [10] (Павлов К.Ф. и др. «Примеры и задачи по курсу процессов и аппаратов химической технологии», М., «Химия», 1964), и по ведомственным справочникам.

Примечание: Парциальное равновесное давление пара индивидуального вещества (в паро-воздушной смеси) над многокомпонентным раствором (нефтепродуктом) может быть определено по закону Рауля [9]:

$$p_i = P_t \cdot x_i$$

где: х_і - мольная доля і - го вещества в растворе;

P_t - определяется по уравнениям 5.1.1 - 5.1.2.

5.1.4. РАСЧЕТ ДАВЛЕНИЯ ГАЗОВ НАД ИХ ВОДНЫМИ РАСТВОРАМИ

Давления газов над их водными растворами при фактической температуре (P_t мм.рт.ст.) рассчитываются по формуле:

$$P_{t} = \frac{K_{\Gamma} \cdot X_{i} \cdot 18}{m_{i}} \tag{5.1.3}$$

где: К_г - константа Генри, мм.рт.ст., принимается по справочным данным или (для некоторых газов) по приложению 4;

Х_і - массовая доля і-го газа, кг/кг воды;

18 - молекулярная масса воды;

m_i - молекулярная масса і-го газа (см. п. 5.1.5).

5.1.5. ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ ПАРОВ ЖИДКОСТЕЙ

Молекулярная масса паров нефтей и нефтепродуктов принимается в зависимости от температуры начала их кипения по приложению 5.

Молекулярная масса однокомпонентных веществ нефтепереработки принимается по данным приложения 2, а для других продуктов - по справочным данным или, расчетам, исходя из структурной формулы вещества.

Атомные массы некоторых элементов представлены в приложении 6.

5.1.6. ОПРЕДЕЛЕНИЕ ОПЫТНЫХ ЗНАЧЕНИЙ КОЭФФИЦИЕНТОВ К.

 K_t - опытный коэффициент для пересчета значений концентраций насыщенных паров в резервуарах при температуре 38° С к фактической температуре.

$$K_t = \frac{P_t \cdot \rho_t}{P_{38} \cdot \rho_{38}} \tag{5.1.4}$$

где: ρ_t - плотность паров жидкости при фактической температуре, кг/м³; ρ_{38} - то же, при температуре 38° С, кг/м³.

Значения коэффициента K_t^{max} и K_t^{min} принимаются в зависимости от максимальной (max) и минимальной (min) температуры жидкости при закачке ее в резервуар по приложению 7.

5.1.7. ОПРЕДЕЛЕНИЕ ОПЫТНЫХ ЗНАЧЕНИЙ КОЭФФИЦИЕНТОВ КР

 K_{p} - опытный коэффициент, характеризующий эксплуатационные особенности резервуара.

$$K_{p} = \frac{C_{\Phi}}{C_{ti}} \tag{5.1.5}$$

где: C_{Φ} - фактическая концентрация паров жидкости, г/м³;

С_н - концентрация насыщенных паров жидкости, г/м³.

 C_{Φ} и C_{H} определяются при одной и той же температуре.

Все эксплуатируемые на предприятии резервуары определяются по следующим признакам:

- наименование жидкости;
- индивидуальный резервуар или группа одноцелевых резервуаров;
- объем;
- наземный или заглубленный;
- вертикальное или горизонтальное расположение;
- режим эксплуатации (мерник или буферная емкость);
- оснащенность техническими средствами сокращения выбросов (ССВ):
- понтон, плавающая крыша (ПК), газовая обвязка резервуаров (ГОР);
- количество групп одноцелевых резервуаров.

Примечание 1. Режим эксплуатации «буферная емкость» характеризуется совпадением объемов закачки и откачки жидкости из одного и того же резервуара.

Значения K_p принимаются по данным приложения 8, кроме ГОР.

При этом в приложении 8:

 K_{p} подразделяются, в зависимости от разности температур закачиваемой жидкости и температуры атмосферного воздуха в наиболее холодный период года, на три группы:

Группа А. Нефть из магистрального трубопровода и другие нефтепродукты при температуре закачиваемой жидкости, близкой к температуре воздуха.

Группа Б. Нефть после электрообессоливающей установки (ЭЛОУ), бензины товарные, бензины широкой фракции (прямогонные, катализаты, рафинаты, крекингбензины и т.д.) и другие продукты при температуре закачиваемой жидкости, не превышающей 30 °C по сравнению с температурой воздуха.

Группа В. Узкие бензиновые фракции, ароматические углеводороды, керосин, топлива, масла и другие жидкости при температуре, превыплающей 30 °C по сравнению с температурой воздуха.

Значения коэффициента $K_p^{\text{ гор}}$ для газовой обвязки группы одноцелевых резервуаров определяются в зависимости от одновременности закачки и откачки жидкости из резервуаров:

$$K_p^{zop} = 1.1 \cdot K_p \cdot \frac{(Q_{3a\kappa} - Q_{om\kappa})}{Q_{3a\kappa}}$$
 (5.1.6)

где: $(Q_{\text{зак}} - Q_{\text{отк}})$ - абсолютная средняя разность объемов закачиваемой и откачиваемой из резервуаров жидкости.

Примечание 2. Для группы одноцелевых резервуаров с имеющимися техническими средствами сокращения выбросов (ССВ) и при их отсутствии (ОТС) определяются средние значения коэффициента K_p^{cp} по формуле:

$$K_{p}^{cp} = \frac{\left(K_{p} \cdot V_{p} \cdot N_{p}\right)^{CCB} + \left(K_{p} \cdot V_{p} \cdot N_{p}\right)^{OTC}}{\left(V_{p} \cdot N_{p}\right)^{CCB} + \left(V_{p} \cdot N_{p}\right)^{OTC}}$$
(5.1.7)

где: V_p - объем резервуара, M^3 ;

N_p - количество резервуаров, шт.

5.1.8. ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ КОЭФФИЦИЕНТОВ КВ

Коэффициент К_в рассчитывается на основе формулы Черникина (ф-ла 1, [13] в зависимости от значения давления насыщенных паров над жидкостью.

При $P_{t} \le 540$ мм.рт.ст. $K_B = 1$, а при больших значениях принимается по данным приложения 9.

5.1.9. ОПРЕДЕЛЕНИЕ ОПЫТНЫХ ЗНАЧЕНИЙ КОЭФФИЦИЕНТОВ Коб

Значение коэффициента K_{ob} принимается в зависимости от годовой оборачиваемости резервуаров (n):

$$n = \frac{B}{\rho_{\infty} \cdot V_p \cdot N_p}, \tag{5.1.8}$$

где: V_p - объем одноцелевого резервуара, м³.

Значения опытного коэффициента Коб принимаются по приложению 10.

5.2 ВЫБРОСЫ ПАРОВ НЕФТЕЙ И БЕНЗИНОВ

Валовые выбросы паров (газов) нефтей и бензинов рассчитываются по формулам:

максимальные выбросы (М. г/с)

$$M = P_{38} \cdot m \cdot K_t^{\text{max}} \cdot K_p^{\text{max}} \cdot K_g \cdot V_q^{\text{max}} \cdot 0.163 \cdot 10^{-4}$$
(5.2.1)

годовые выбросы (G, т/год)

$$G = \frac{P_{38} \cdot m \cdot \left(K_{t}^{\text{max}} \cdot K_{s} + K_{t}^{\text{min}}\right) \cdot K_{p}^{cp} \cdot K_{o6} \cdot B \cdot 0.294}{10^{7} \cdot \rho_{w}}$$
(5.2.2)

где: P₃₈ - давление насыщенных паров нефтей и бензинов при температуре 38° С:

т - молекулярная масса паров жидкости;

 K_t^{min} , K_t^{max} - опытные коэффициенты, принимаются по Приложению 7. K_p^{cp} , K_p^{max} - опытные коэффициенты, принимаются по Приложению 8.

 V_{μ}^{max} - максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, $M^3/4ac$;

К_в - опытный коэффициент, принимается по Приложению 9;

 K_{ob} - коэффициент оборачиваемости, принимается по Приложению 10;

 ρ_{w} - плотность жидкости, T/M^{3} ;

В - количество жидкости, закачиваемое в резервуары в течении года, т/год.

Примечание 1. Для предприятий, имеющих более 10 групп одноцелевых резервуаров, допускается принимать значения коэффициента K_n^{cp} и при максимальных выбросах.

Примечание 2. В случае, если бензины автомобильные закачиваются в группу одноцелевых резервуаров в летний период, как бензин «летний», а в зимний период года, как бензин «зимний», то:

$$G = \frac{0.294 \cdot \left[(P_{38} \cdot K_{\ell}^{\text{max}} \cdot K_{B}^{\text{min}} \cdot m)^{\text{nem}} + (P_{38} \cdot K_{\ell}^{\text{min}} \cdot m)^{\text{nem}} \right] \cdot K_{p}^{cp} \cdot K_{ob} \cdot B}{10^{7} \cdot \rho_{sc}}$$
(5.2.3)

Выбросы паров нефтей и бензинов по группам углеводородов (предельных и непредельных), бензола, толуола, этилбензола, ксилола и сероводорода рассчитываются по формулам:

максимальные выбросы (М, г/с) і-го загрязняющего вещества:

$$M_i = M \cdot C_i \cdot 10^{-2} \tag{5.2.4}$$

годовые выбросы (G, т/год):

$$G_i = G \cdot C_i \cdot 10^{-2} \tag{5.2.5}$$

где Сі - концентрация і-го загрязняющего вещества, % мас.

5.3 ВЫБРОСЫ ПАРОВ ИНДИВИДУАЛЬНЫХ ВЕЩЕСТВ

Выбросы паров жидкости рассчитываются по формулам:

максимальные выбросы (М, г/с)

$$M = \frac{0.445 \cdot P_{t} \cdot m \cdot K_{p}^{\text{max}} \cdot K_{B} \cdot V_{q}^{\text{max}}}{10^{2} \cdot (273 + t_{w}^{\text{max}})}$$
(5.3.1)

годовые выбросы (G, т/год)

$$G = \frac{0.160 \cdot (P_t^{\text{max}} \cdot K_B + P_t^{\text{min}}) \cdot m \cdot K_p^{cp} \cdot K_{o6} \cdot B}{10^4 \cdot \rho_{\infty} \cdot (546 + t_{\infty}^{\text{max}} + t_{\infty}^{\text{min}})},$$
(5.3.2)

где P_t^{min} , P_t^{max} - давление насыщенных паров жидкости при минимальной и максимальной температуре жидкости соответственно, мм.рт.ст.;

т - молекулярная масса паров жидкости;

 ${\rm K_p}^{\rm cp}, {\rm K_p}^{\rm max}$ - опытные коэффициенты, принимаются по Приложению 8;

К_в - опытный коэффициент, принимается по Приложению 9;

 $V_{\nu_{i}}^{\text{max}}$ - максимальный объем паровоздушной смеси, вытесняемой из резервуаров во время его закачки, м³/час;

 $\rho_{\rm *}$ - плотность жидкости, т/м³;

 t_{*}^{min} , t_{*}^{max} - минимальная и максимальная температура жидкости в резервуаре соответственно, °C:

 $K_{o \bar{o}}$ - коэффициент оборачиваемости, принимается по Приложению 10;

В - количество жидкости, закачиваемое в резервуар в течение года, т/год.

5.4 ВЫБРОСЫ ПАРОВ МНОГОКОМПОНЕНТНЫХ ЖИДКИХ СМЕСЕЙ ИЗВЕСТНОГО СОСТАВА

Выбросы і-го компонента паров жидкости рассчитываются по формуле

- максимальные выбросы (Мі, г/с)

$$M_{i} = \frac{0.445 \cdot P_{ii} \cdot X_{i} \cdot K_{p}^{\max} \cdot K_{B} \cdot V_{q}^{\max}}{10^{2} \cdot \sum (X_{i} : m_{i}) \cdot (273 + t_{\infty}^{\max})}$$
(5.4.1)

- годовые выбросы (G, т/год)

$$G_{i} = \frac{0.160 \cdot \left(P_{ii}^{\text{max}} \cdot K_{B} + P_{ii}^{\text{min}}\right) \cdot X_{i} \cdot K_{p}^{cp} \cdot K_{o6} \cdot B \cdot \sum_{i} \left(X_{i} \cdot \rho_{i}\right)}{10^{4} \cdot \sum_{i} \left(X_{i} : m_{i}\right) \cdot \left(546 + t_{oc}^{\text{max}} + t_{oc}^{\text{min}}\right)}$$
(5.4.2)

где P_{ti}^{min} , P_{ti}^{max} - давление насыщенных паров і-го компонента при минимальной и максимальной температуре жидкости соответственно, мм.рт.ст.;

Хі - массовая доля вещества;

вуаров во время его закачки, м³/час:

 ${K_p}^{cp}, {K_p}^{max}$ - опытные коэффициенты , принимаются по Приложению 8;

 $K_{\mbox{\tiny B}}$ - опытный коэффициент, принимается по Приложению 9;

 K_{o6} - коэффициент оборачиваемости, принимается по Приложению 10; t_*^{min}, t_*^{max} - минимальная и максимальная температура жидкости в резервуаре

соответственно, °C; $V_{\scriptscriptstyle q}^{\;\;max}$ - максимальный объем паровоздушной смеси, вытесняемой из резер-

В - количество жидкости, закачиваемое в резервуар в течение года, т/год.

Данные по компонентному составу растворителей, лаков, красок и т.д. представлены в Приложении 11.

5.5 ВЫБРОСЫ ГАЗОВ ИЗ ВОДНЫХ РАСТВОРОВ

Выбросы і-го компонента газа из водных растворов рассчитываются по формулам:

- максимальные выбросы (M_i, г/с)

$$M_{i} = \frac{0.08 \cdot K_{\Gamma}^{\text{max}} \cdot X_{i} \cdot K_{p}^{\text{max}} \cdot V_{q}^{\text{max}}}{(273 + t_{\infty}^{\text{max}})}, \tag{5.5.1}$$

- годовые выбросы (G_i, т/год)

$$G_{i} = \frac{0.289 \cdot \left(K_{\Gamma}^{\max} + K_{\Gamma}^{\min}\right) \cdot X_{i} \cdot K_{p}^{cp} \cdot V_{q}^{\max} \cdot \tau_{1} \cdot \tau_{2}}{10^{3} \cdot \left(546 + t_{\infty}^{\max} + t_{\infty}^{\min}\right)},$$
(5.5.2)

где: K_r^{min} , K_r^{max} - константа Генри при минимальной и максимальной температурах соответственно, мм.рт.ст.;

Хі - массовая доля вещества;

 ${\rm K_p}^{\rm cp}$, ${\rm K_p}^{\rm max}$ - опытные коэффициенты, принимаются по Приложению 8.

 $V_{\nu_{i}}^{\text{max}}$ - максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, м³/час;

 t_*^{min} , t_*^{max} - минимальная и максимальная температура жидкости в резервуаре соответственно, °C;

 τ_1 , τ_2 - время эксплуатации резервуара соответственно сут/год и час/сут.

5.6 ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ (КРОМЕ БЕНЗИНОВ)

Выбросы паров нефтепродуктов рассчитываются по формуле:

- максимальные выбросы (М, г/с)

$$M = C_{20} \cdot K_{t}^{\text{max}} \cdot K_{p}^{\text{max}} \cdot V_{q}^{\text{max}} : 3600$$
 (5.6.1)

- годовые выбросы (G, т/год)

$$G = \frac{C_{20} \cdot (K_t^{\text{max}} + K_t^{\text{min}}) \cdot K_p^{cp} \cdot K_{o6} \cdot B}{2 \cdot 10^6 \cdot \rho_{oc}},$$
 (5.6.2)

где C_{20} - концентрация насыщенных паров нефтепродуктов при температуре 20 °C, г/м³:

 K_t^{min} , K_t^{max} - опытные коэффициенты, при минимальной и максимальной температурах жидкости соответственно, принимаются по Приложению 7;

 K_p - опытный коэффициент , принимается по Приложению 8;

 K_{o6} - опытный коэффициент, принимается по Приложению 10;

В - количество жидкости, закачиваемое в резервуар в течение года, т/год.

 $V_{_{\!\!\!\ ^{1}}}^{_{\!\!\!\ max}}$ - максимальный объем паровоздушной смеси, вытесняемой из резервуара во время его закачки, м³/час;

 $\rho_{\rm *}$ - плотность жидкости, т/м³;

Примечание 1. Для предприятий, имеющих более 10 групп одноцелевых резервуаров (керосинов, дизтоплив и т.д.) допускается принимать значения коэффициента K_p^{cp} и при максимальных выбросах.

Примечание 2. В случае, если дизельное топливо закачивается в группу одноцелевых резервуаров в летний период, как ДТ «летнее», а в зимний период года, как ДТ «зимнее», то:

$$G = \frac{(C_{20}^{n} \cdot K_{t}^{\text{max}} + C_{20}^{s} \cdot K_{p}^{\text{min}}) \cdot K_{p}^{cp} \cdot K_{o6} \cdot B}{2 \cdot 10^{6} \cdot \rho_{w}}, \qquad (5.6.3)$$

где $C_{20}{}^{\mu}$, $C_{20}{}^{3}$ - концентрация насыщенных паров летнего и зимнего вида дизельного топлива соответственно, г/м 3 .

6. ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ В АТМОСФЕРУ ИЗ РЕЗЕРВУАРОВ НЕФТЕБАЗ, ТЭЦ, КОТЕЛЬНЫХ, СКЛАДОВ ГСМ

6.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ВЫБРОСОВ

Количество закачиваемой в резервуар жидкости принимается по данным предприятия в осенне-зимний ($B_{\rm os}$, т) период года и весенне-летний ($B_{\rm sn}$, т) период. Кроме того, определяется объем паровоздушной смеси, вытесняемой из резервуара во время его закачки ($V_{\rm q}$, м³/час), принимаемый равным производительности насоса.

Значения опытных коэффициентов K_p принимается по данным Приложения 8.

Примечание. Выбросы от резервуаров с нижним и боковым подогревом одновременно рассчитывать согласно раздела 5.6. настоящих методических указаний.

6.2 ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ

Валовые выбросы паров нефтепродуктов рассчитываются по формулам*):

- максимальные выбросы (М, г/с)

$$M = C_1 \cdot K_p^{\text{max}} \cdot V_q^{\text{max}} : 3600$$
 (6.2.1)

- годовые выбросы (G, т/год)

$$G = (Y_2 \cdot B_{os} + Y_3 \cdot B_{es}) \cdot K_p^{\text{max}} \cdot 10^{-6} + G_{xp} \cdot K_{nn} \cdot N_p,$$
(6.2.2)

где: C_1 - концентрация паров нефтепродукта в резервуаре, г/м³ , принимается по Приложению 12;

 y_2 , y_3 - средние удельные выбросы из резервуара соответственно в осеннезимний и весенне-летний периоды года, г/т, принимаются по Приложению 12;

 G_{xp} - выбросы паров нефтепродуктов при хранении бензина автомобильного в одном резервуаре, т/год, принимается по Приложению 13;

 $K_{\mbox{\scriptsize нп}}$ - опытный коэффициент, принимается по Приложению 12. При этом:

$$K_{HII} = C_{20 \ 1} : C_{20 \ 6a} \tag{6.2.3}$$

где: $C_{20\ 1}$ - концентрация насыщенных паров нефтепродуктов при 20° C, г/м³; $C_{20\ 6a}$ - то же, паров бензина автомобильного, г/м³.

Концентрации углеводородов (предельных, непредельных), бензола, толуола, этилбензола и ксилолов (C_{i_1} % масс.) в парах товарных бензинов приведены в Приложении 14.

*) При этом выбросы индивидуальных компонентов по группам рассчитываются по формулам (5.2.4 и 5.2.5).

7. ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ В АТМОСФЕРУ ИЗ РЕЗЕРВУАРОВ АВТОЗАПРАВОЧНЫХ СТАНЦИЙ

7.1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА ВЫБРОСОВ

Для расчета максимальных выбросов принимается объем слитого нефтепродукта $(V_{cn}, \, M^3)$ из автоцистерны в резервуар.

Количество закачиваемого в резервуар нефтепродукта принимается по данным АЗС в осенне-зимний (Q_{03} , M^3) и весенне-летний (Q_{B3} , M^3) периоды года.

Примечание. Одновременная закачка нефтепродукта в резервуары и баки автомобилей не осуществляется.

7.2 ВЫБРОСЫ ПАРОВ НЕФТЕПРОДУКТОВ

Валовые выбросы паров нефтепродуктов рассчитываются по формулам *):

- максимальные выбросы (M, г/с) автобензины и дизельное топливо

$$M = (C_p^{\text{max}} \cdot V_{c_0}) : 1200$$
 (7.2.1)

масла

$$M = (C_p^{max} \cdot V_{cn}) : 3600$$
 (7.2.2)

где: 1200 и 3600 - среднее время слива, с;

Годовые выбросы (G, т/год) рассчитываются суммарно при закачке в резервуар, баки автомашин (G_{3ak}) и при проливах нефтепродуктов на поверхность ($G_{пр}$)*:

$$G = G_{3ak} + G_{np} \tag{7.2.3}$$

$$G_{3ak} = [(C_p + C_6) \cdot Q_{03} + (C_p + C_6) \cdot Q_{BR}] \cdot 10^{-6}$$
(7.2.4)

где: C_p , C_6 - концентрации паров нефтепродуктов в выбросах паровоздушной смеси при заполнении резервуаров и баков автомашин, г/м³, принимаются по приложению 15.

Годовые выбросы (G, т/год) при проливах составляют *):

для автобензинов

$$G_{np} = 125 \cdot (Q_{o3} + Q_{BR}) \cdot 10^{-6}$$
 (7.2.5)

для дизтоплив

$$G_{nn} = 50 \cdot (Q_{03} + Q_{nn}) \cdot 10^{-6} \tag{7.2.6}$$

 $^{*)}$ Выбросы индивидуальных компонентов по группам рассчитываются по формулам (5.2.4 и 5.2.5).

для масел

$$G_{iip} = 12.5 \cdot (Q_{os} + Q_{Bil}) \cdot 10^{-6}$$
 (7.2.7)

где: 125, 50, 12.5 - удельные выбросы, $\Gamma/M^{3.*}$)

Значения концентраций паров углеводородов (C, $r/м^3$) в выбросах паровоздушной смеси при заполнении резервуара и баков автомашин приведены в Приложении 15.

Значения концентраций паров бензинов (предельных, непредельных), бензола, толуола, этилбензола и ксилола ***) приведены в Приложении 14.

- $^{*)}$ В качестве удельных выбросов при «проливах» приведены данные разработчиков о суммарных потерях на АЗС (отнесенных к м 3 соответствующего нефтепродукта) через неплотности перекачивающей и запорной арматуры, при стекании со стенок шлангов, резервуаров для хранения, баков автомашин и т.п.
- **) Здесь и далее под термином «ксилол» подразумевается смесь орто-, мета- и пара-изомеров (синоним «ксилолы»).

8. ПРИМЕРЫ РАСЧЕТА ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ

8.1 НПЗ. БЕНЗИН-КАТАЛИЗАТ. ВАЛОВЫЕ ВЫБРОСЫ

Исходные данные

Наименование	P ₃₈ ,	t,,,	t _* ,°C		V, max,	В,	$\rho_{\mathbf{x}}$
продукта	мм.рт.ст.	°C	max	min	м ³ /час	т/год	T/M³
Бензин-катализат	420	42	32	10	56	300000	0.74

Продолжение исходных данных

Конструкция резервуара	Режим экс- плуатации	CCB V_p , M^3		N _p , шт.	Количество групп	
Наземный	мерник	отсутств.	1000	2	22	
вертикальный	мерник	Oleyieis.	1000	,	22	

Табличные данные

Валовый выброс

m	K, max	K, min	$\mathbf{K_p}^{\mathrm{ep}}$	К	М, г/с	G, т/год	
63.7	0.78	0.42	0.62	1.0	11.8100	324.6692	

$$n = 300000 : (0.74 \cdot 1000 \cdot 3) = 135$$
, а $K_{o6} = 1.35$ (По Приложению 10).

Расчеты выбросов:

$$\begin{aligned} \mathbf{M} &= 0.163 \cdot 420 \cdot 63.7 \cdot 0.78 \cdot 0.62 \cdot 1.0 \cdot 56 \cdot 10^{-4} = 11.8100 \text{ r/c} \\ &\quad (5.2.1) \end{aligned}$$

$$\begin{aligned} \mathbf{G} &= 0.294 \cdot 420 \cdot 63.7 \cdot (0.78 \cdot 1.0 + 0.42) \cdot 0.62 \cdot 1.35 \cdot 300000 \cdot 10^{-7} \text{ : } 0.73 = \\ &\quad = 324.6692 \text{ т/год} \\ &\quad (5.2.2) \end{aligned}$$

При необходимости идентификации в выбросах индивидуальных углеводородов по их содержанию в паровой фазе приоритетными являются данные непосредственных инструментальных определений массового состава выброса с последующим расчетом M_i и G_i по формулам 5.2.4 и 5.2.5, соответственно.

Кроме того для расчета могут быть использованы ориентировочные составы паров нефтепродуктов из Приложения 14, а также соотношения давлений насыщенных паров углеводородов при заданной температуре ($t_{cp} = (t_{max} + t_{min})/2$ - для G_i , т/год;

t_{max} - для M_i, г/сек и коэффициенты пересчета K_{i/5} из Приложения 16.

Идентификация состава выбросов (M = 11,8100 г/с; G = 321.6692 т/год)

0	Углеводороды													
Опреде-			Предель	ные C ₁₋₁₀				Ароматические						
ляемый параметр ^{*)}	C ₅	C ₆	C ₇	C ₈	C,	C ₁₀	ΣC ₁₋₁₀	бен- зол	то- луол	кен- лол	Σ			
1	2	3	4	5	6	7	8	9	10	11	12			
С ₁ . %мас. (Прил.14, стабильный катализат)							92,84	2,52	2,76	1,88	100,0			
m, (Прил. 16)	72,15	86,18	100,20	114,23	128,25	142,29								
Рі _{зо} , Па (Прил. 16)	81770	25200	7763	2454	857	244,7	118288,7							
Уi	0,6914	0,2130	0,0656	0,0207	0,0072	0,0021	1,0000							
m, y	49,88	18,36	6,57	2,36	0,92	0,30	78,39							
С',% мас.	63,64	23,42	8,38	3,01	1,17	0,38	100,00							
Сі.% мас.	59,09	21,74	7,78	2,79	1,09	0,35	92,84							
Mi, r/c	6,97	2,57	0,92	0,33	0,13	0,04	10,96	0,30	0,33	0,22	11,81			
К _{ν5} (из Прил.16)	1,000	1,667	3,125	5,882	10,000	16,667								
K _{1/5} -M ₁ г/с (в пересчете на C ₅)	6,97	4,28	2,88	1,94	1,3	0,67	18,04							
Рі ₂₀ , Па (Прил.16)	56410	17600	4712	1391	461,0	119,7	80693,7							
y'i	0,6991	0,2181	0,0584	0,0172	0,0057	0,0015	1,0000							
m _i ·y,	50,44	18,80	5,85	1,96	0,73	0,21	77,99							
C'i.% mac.	64,67	24,11	7,50	2,51	0,94	0,27	100,00							
C _i . % Mac.	60,05	22,38	6,96	2,33	0,87	0,25	92,84	2,52	2,76	1,88	100,0			
G _i , т/год в пересчете на С ₅	193,1623	71,9895	22,3882	7,4949	2,7985	0,8042	298,6376	8,1061	8,8781	6,0474	321,6692			
Кі/5·Gі т/год	193,16	120,01	69,96	44,09	27,99	13,40	468,61							

^{*)} **Примечание.** Относительная равновесная мольная доля: $y_i^* = P_i/\Sigma P_i$.

Относительная равновесная концентрация, % мас.: $C_i^* = \frac{m_i \cdot y_i^*}{\sum_{i=1}^{m_i} m_i \cdot y_i^*} \cdot 100$,

Абсолютная концентрация, % мас.: $C_i = \frac{C_i^* \cdot \sum C_{1-10}}{100}$,

Максимальный разовый выброс, г/сек: $M_i = \frac{M \cdot C_i}{100}$,

Валовый выброс , т/год: $G_i = \frac{G \cdot C_i}{100}$

8.2 НПЗ. БЕНЗИН АВТОМОБИЛЬНЫЙ. ВАЛОВЫЕ ВЫБРОСЫ. ССВ - ПОНТОН И ОТСУТСТВИЕ ССВ

Исходные данные

Продукт	P38, MN	4.рт.ст.	t _{nk} ,	t _{нк} , °C		,C	V. max,	В, т/год	/3
продукт	летний	зимний	летн.	зимн.	max	min	м ³ /час	Б, 1/1 ОД	р _{ж,} т/м ³
Бензин	425	525	40	25	30	+5	250	1460000	0.73
автом.	723	323	40	35	30	73	230	1400000	0.73

Продолжение исходных данных

Конструкция ре- зервуара	Режим эксплуат,	$CCB V_m M^3$		№, шт.	Количество групп
Наземный	Manufille	понтон	10000	2	22
вертикальный	мерник	отсутств.	5000	2	ļ

Табличные данные

Расчеты

m		K, max	K, min	К _г		К _р ^{ср}	Выбросы	
летн.	зимн.	101	16,	понтон	отсут.	Кр	M, 1/c	G, т/год
63.1	61.5	0.74	0.35	0.11	0.60	0.27	21.8344	865.3175

Средние значения
$$K_p^{cp} = \frac{(0.11 \cdot 10000 \cdot 2) + (0.60 \cdot 5000 \cdot 2)}{(10000 \cdot 2) + (5000 \cdot 2)} = 0.27$$
 (5.1.7)

n =
$$1460000 : [0.73 \cdot (10000 \cdot 2 + 5000 \cdot 2)] = 67$$
, a $K_{o6} = 1.75$ (5.1.8)

Расчеты выбросов:

$$M = 0.163 \cdot 425 \cdot 63.1 \cdot 0.74 \cdot 0.27 \cdot 1.0 \cdot 250 \cdot 10^{-4} = 21.8344 \text{ r/c}^{*}$$

$$G = \frac{0.294 \cdot \left[(425 \cdot 63.1 \cdot 0.74 \cdot 1.0) + (525 \cdot 61.5 \cdot 0.35) \right] \cdot 0.27 \cdot 1.75 \cdot 1460000}{10^7 \cdot 0.73} = 865.3175 \text{ T/rog} ^{\bullet)} (5.2.3)$$

^{*)} Примечание. Порядок расчета выбросов индивидуальных углеводородов анологичен примеру 8.1.

8.3 НПЗ. БЕНЗИН АВТОМОБИЛЬНЫЙ. ИДЕНТИФИКАЦИЯ ВЫБРОСОВ

Исходные данные

	P ₃₈ ,MN	1.рт.ет	t _{ak}	,°C	t _w ,	°C	V.max,	В,	$\rho_{\mathbf{x}}$
Продукт	летя.	зимн.	лети.	зимн.	max	min	м ³ /час	т/год	T/M ³
Бензин	425	525	40	35	30	+5	250	1460000	0.73
автом.	123	323		55	50		250	110000	V.73

Продолжение исходных данных

Конструкция резервуара	Режим эксплуат.	ССВ	V _р , м ³	N _p , шт.	Количество групп
Наземный	мерник	отсутств.	5000	1	22
вертикальный	мерник		5000	7	22

Табличные данные

Валовые выбросы

1	n	K max	K, min	Kρ ^{cp}	Кв	М. г/с	G, т/год	
летн.	зимн.	N _t	I.i	Мр	IV8	171. 170		
63.1	61.5	0.74	0.35	0.60	1.0	48.5209	1483.4014	

$$n = 1460000 : (0.73 \cdot 5000 \cdot 4) = 100$$
, a $K_{o6} = 1.35$

Расчеты валовых выбросов:

$$M = 0.163 \cdot 425 \cdot 63.1 \cdot 0.74 \cdot 0.60 \cdot 1.0 \cdot 250 \cdot 10^{-4} = 48.5209$$
, r/c

$$G = \frac{0.294 \cdot \left[\left(425 \cdot 63.1 \cdot 0.74 \cdot 1.0 \right) + \left(525 \cdot 61.5 \cdot 0.35 \right) \right] \cdot 0.60 \cdot 1.35 \cdot 1460000}{10^7 \cdot 0.73} = 1483.4014 \text{ т/год}$$

Концентрации веществ в выбросах, %масс

Углевод. пред. алиф. С ₁ - С ₁₀	Углевод. непред. C ₂ - C ₅	Бензол	Толуол	Этилбен- зол	Ксилолы	Сероводо- род
94.323	2.52	1.82	1.16	0.045	0.132	отс.

Выбросы	Углевод. пред. алиф. С ₁ -С ₁₀	Углевод непред. С2 -С5	Бензол	Толуол	Этил- бензол	Ксило- лы	Серово- дород
M _i , r/c	45.8000	1.2200	0.8830	0.5630	0.0218	0.0640	отс
G _i , т/год	1400.0000	37.4000	27.0000	17.2000	0.6680	1.9600	отс.

Примечание: При необходимости идентификации в выбросах индивидуальных углеводородов предельных C_1 - C_{10} и непредельных C_2 - C_5 по известному их содержанию в паровой фазе используются коэффициенты пересчета $K_{i/5}$ из Приложения 16:

		Иде	тификац	ия соста	ва выбро	сов угл	еводоро,	цов	
Выбросы			Непредельные C ₂ - C ₅						
	C ₄	C ₅	C ₆	C ₇	C ₈	C ₉	C ₁₀	C ₄	C ₅
Сі % мас	28.064	32.848	20.773	9.030	2.889	0.599	0.125	0.22	2.30
M _i r/c	13.6	15.9	10.1	4.4	1.4	0.3	0.1	0.11	1.11
G _i т/г	416.3	487.3	308.1	134.0	42.8	8.9	1.9	3.3	34.1
$K_{i/C_s} \cdot M_i$	6.8	15.9	16.8	13.8	8.2	3.0	1.7	0.04	1.11
$M_{C_1-C_{10}}$	$C_{C_5} = \sum_{C_5}$	$\sum K_{i/C_5}$	$\cdot M_i =$	66.2	г/с			M_{C_2-C} $\sum K_{ijC}$	$C_5/C_5 = C_5/C_5 = C_5 \cdot M_i = C_5 \cdot M_i$
							,	=1.15	, _{τ/c}
									$C_5/C_5 = $ $C_5/C_5 = $ $C_5 \cdot G_i = $
$G_{C_1-C_{10}}$	$G_{C_1 - C_{10}/C_5} = \sum K_{i/C_5} \cdot G_i = 1856.4$								
								= 35.4	1

8.4 НПЗ. КЕРОСИН ТЕХНИЧЕСКИЙ

Исходные данные

Наименование			В,	$\rho_{\mathbf{x}}$			
продукта	г/м ³	max	min	м ³ /час	т/год	T/M ³	
Керосин техн.	11.2	55	25	70	500000	0.85	

Продолжение исходных данных

Конструк- ция резервуара	Режим эксплуа- тац.	ССВ	V _р , м ³	N _р , шт.	Количество групп
Наземный вертикальн.	мерник	отсутств.	3000	4	22

Табличные данные

Выбросы

K, max	K, min	K, cp	М, г/с	G, т/год
2.88	1.20	0.63	0.3950	16.9000

$$n = 500000 : (0.85 \cdot 3000 \cdot 4) = 49$$
, a $K_{06} = 2.0$

 $M = 11.2 \cdot 2.88 \cdot 0.63 \cdot 70 : 3600 = 0.3950 \, \text{r/c}$

$$G = \frac{11.2 \cdot (2.88 + 1.20) \cdot 0.63 \cdot 2 \cdot 500000}{2 \cdot 10^6 \cdot 0.85} = 16.9000$$
_{т/год}

8.5 РАСТВОРИТЕЛЬ № 646. ВЫБРОСЫ КОМПОНЕНТОВ

Исходные данные

Наименова-	t _a ,	°C	Vy max,	В,	Конструкция	
ние продукта	max	max min M³/час		т/год	резервуара	
Раствор. № 646	30	20	0.5	1300	горизонтальный	

Продолжение исходных данных

Табличные данные

Режим эксплуатации	ССВ	V _р , м ³	N _p , шт.	Kp max	K _p ^{cp}
Мерник	отс.	5	4	1.0	0.7

Продолжение табличных данных

¥C.	Константы Антуана				ρ _ж	С"
Компонент	A	В	C	m	ρ _ж τ/ м ³	%масс
Ацетон	7 2506	1281.7	237	58.1	0.792	7
Бутиловый спирт	8.7051	2058 4	246	74.1	0.805	10
Бутилацетат	7.006	1340.7	199	116	0 882	10
Толуол	6.95334	1343.94	219.38	92 1	0.867	50
Этиловый спирт	9.274	2239	273	46 1	0 789	15
Этилцеллозольв	8.416	2135	253	90	0 931	8

Расчеты

¥0	P ₃₀	P ₂₀	.,	v		G,
Компонент	MM.	рт.ст.	$X_i: m_i$	$X_i : \rho_i$	r/c	т/год
Ацетон	282	183	0.00120	0.088	0.0112	0.1081
Бутиловый спирт	17.7	9.26	0.00135	0.124	0.0010	0.0090
Бутилацетат	14.2	7.66	0.000860	0.113	0.00080	0.0073
Толуол	36.7	21.8	0.00543	0.577	0.0104	0.0971
Этиловый спирт	76.7	42.9	0.00325	0.190	0.0065	0.0596
Этилцеллозольв	7.44	3.94	0.00089	0.086	0.00034	0.0030

Примечание. $X_i = C_i : 100$

$$\sum (X_i : m_i) = 0.00120 + 0.00135 + 0.00086 + 0.00543 + 0.00325 + 0.00089 = 0.0130$$

$$\sum (X_i : \rho_i) = 0.088 + 0.124 + 0.113 + 0.577 + 0.190 + 0.086 = 1.178$$

$$n = 1300 : 0.849 : 5 : 4 = 77$$
, a $K_{06} = 1.5$

$$M_{\it ацетона} = \frac{0.445 \cdot 282 \cdot 0.07 \cdot 1.0 \cdot 1.0 \cdot 0.5}{100 \cdot 0.0130 \cdot (273 + 30)} = 0.0112 ~_{\Gamma/C} ~_{\rm H} ~_{\rm T.Д.}$$

$$G_{\text{ацетона}} = \frac{0.160 \cdot (282 \cdot 1.0 + 183) \cdot 0.07 \cdot 0.70 \cdot 1.5 \cdot 1300 \cdot 1.178}{10^4 \cdot 0.0130 \cdot (546 + 30 + 20)} = 0.1081 \text{ т/год и т.д.}$$

8.6 НЕФТЕБАЗА, БЕНЗИН АВТОМОБИЛЬНЫЙ, ВАЛОВЫЕ ВЫБРОСЫ

Исходные данные

Наименование продукта	Q _ч , м³/час	B ₀₃ ,	В _{вл} , т	Конструк- ция резервуара	Режим эксплуатац.
Бензин автомоб.	400	16000	24000	наземный вертикальн.	мерник

Продолжение исходных данных

V_p, M^3	№, шт.	CCB	K _p max
5000	8	отсут.	0.80

$$M = 972 \cdot 0.80 \cdot 400 : 3600 = 86.4 \text{ r/c}$$

$$G = (780 \cdot 16000 + 1100 \cdot 24000) \cdot 0.8 \cdot 10^{-6} + 5.8 \cdot 1.0 \cdot 8 = 77.504 \text{ T/год}$$

8.7 АЗС. БЕНЗИН АВТОМОБИЛЬНЫЙ. ВАЛОВЫЕ ВЫБРОСЫ

Исходные данные

Наименование	V _{сл} ,	Q ₀₃ ,	Q _{вл} ,	Конструкция
продукта	м ³	M ³	м ³	резервуара
Автобензин	4.0	3150	3150	

Табличные данные

Выбросы

\mathbf{C}_{max}	C_p^{03}	$C_p^{\mathrm{вл}}$	C ₆ 03	C ₆ ^{BA}	M, r/c*)	G, т/год ^{*)}
480	210	255	420	515	1.60	5.1975

 $M = 480 \cdot 4.0 : 1200 = 1.60 \text{ r/c}$

 $G = [(210 + 420) \cdot 3150 + (255 + 515) \cdot 3150 + 125 \cdot (3150 + 3150)] \cdot 10^{-6} = 5.1975 \text{T/rom}$

*) Примечание. Порядок расчета выбросов индивидуальных углеводородов аналогичен примеру 8.1.

8.8 ТЭЦ. МАЗУТ ТОПОЧНЫЙ (резервуар с нижним боковым подогревом).

Исходные данные

Согласно примечания к п.б.1. расчет ведется по п.5.6.

Наименование продукта	С ₂₀ , г/м ³	Конструкция резервуара	Режим эксплуатации
Мазут топочный М-100	5.4	наземный вертикальный с нижним и боковым подогревом	мерник

Продолжение исходных данных

ССВ	V 143	N III	Кол-во	t _ж ,	°C	V _u ^{max} ,	В,	$\rho_{\mathbf{x}}$,
ССВ	V _p , M	N _p , шт.	групп	max	min	м ³ /ч	т/год	T/M ³
отсут.	1000	3	1	60	60	85	10000	1.015

Табличные данные

Выбросы

K _t max	K _t ^{min}	K _p ^{cp}	K _p max	K _{o6}	M, r/e ^{*)}	G, т/год ^{*)}
3.2	3.2	0.65	0.93	2.5	0,3794	0,2766

n = 10000: $(1.015 \cdot 1000 \cdot 3) = 9.85$

 $M = 5.4 \cdot 3.2 \cdot 0.93 \cdot 85 : 3600 = 0.3794 \text{ r/c}$

 $G = (5.4 \cdot 3.2 + 3.2 \cdot 0.65 \cdot 2.5 \cdot 10000) : (2 \cdot 10^6 \cdot 1.015) = 0.2766$ т/год

8.9 ТЭЦ. МАЗУТ ТОПОЧНЫЙ (резервуар без обогрева).

Исходные данные

Наименование продукта	Конструкция резервуара	В,, т	В _{вл} , т	V _ч ^{max} , м ³ /ч	Режим эксплуа- тации
Мазут топоч-	наземный веркальный	5000	5000	85	мерник
ный М-100	без обогрева	3000	5000	65	мерник

Продолжение исходных данных

ССВ	V_p, M^3	N _p , mt.
Отсуг.	1000	3

Табличные данные Выбросы У2, $\mathbf{y}_1, \mathbf{r}/\mathbf{m}^3$ M, Γ/c*) G, т/год*) $y_3, r/T$ Кип G_{xp} Γ/T 5.4 1.49 $4.3 \cdot 10^{-3}$ 0.1058 4.0 4.0 0.83 0.0524

 $M = 5.4 \cdot 0.83 \cdot 85 : 3600 = 0.1058 \text{ r/c}$

 $G = (4.0 \cdot 5000 + 4.0 \cdot 5000) \cdot 0.83 \cdot 10^{-6} + 1.49 \cdot 4.3 \cdot 10^{-3} \cdot 3 = 0.0524$ т/год

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

- 1. Перечень методических документов по расчету выделений (выбросов) загрязняющих веществ в атмосферный воздух. С.-Пб., 1998.
- Методика определения концентрации сероводорода фотометрическим методом по реакции образования «метиленового голубого». Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. Л., 1987.
- Методика газохроматографического измерения массовой концентрации предельных углеводородов C₁-C₅, а также C₆ и выше (суммарно) в промышленных выбросах. Казанское ПНУ «Оргнефтехимзаводы», ЗАО «Любэкоп», МП «Белинэкомп», 1997.
- 4. Методика газохроматографического измерения массовой концентрации предельных углеводородов С₁-С₁₀ (суммарно), непредельных углеводородов С₂-С₅ (суммарно) и ароматических углеводородов (бензола, толуола, этилбензола, ксилолов, стирола) при их совместном присутствии в промышленных выбросах. Казанское ПНУ «Оргнефтехимзаводы», ЗАО «Любэкоп», МП «Белинэкомп», 1997.
- Перечень и коды веществ, загрязняющих атмосферный воздух. С.П.: НИИ Охраны атмосферного воздуха. Министерство охраны окружающей Среды и природных ресурсов РФ, Фирма «Интеграл». 1997
- 6. Дополнение № 9-38-96 к списку «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест». Утвержден Главным Государственным санитарным врачом Республики Беларусь от 23 февраля 1996 г.
- 7. Справочник химика. Т.1. Л.: «Химия», 1967. С. 1070
- 8. Краткий справочник по химии. Киев.: «Наукова думка», 1974. С. 992
- 9. Тищенко Н.Ф. Охрана атмосферного воздуха. М.: «Химия», 1991. С. 368
- 10. Павлов К.Ф. и др. Примеры и задачи по курсу процессов и аппаратов химической технологии, М., Л.,; «Химия», 1964. С. 664
- 11. Константинов 11.Н. Борьба с потерями от испарения нефти и нефтепродуктов. М.: Гостоптехиздат, 1961. с. 250.
- 12. Сборник методик по расчету выбросов в атмосферу загрязняющих веществ различными производствами. Л., Гидрометеоиздат. 1986. С. 184.
- 13. Инструкция по инвентаризации источников выбросов вредных веществ в атмосферу предприятиями Министерства нефтяной и газовой промышленности СССР (РД 39-01 47098), Уфа, 1989.

приложения

Приложение 1

Предельно допустимые концентрации (ПДК) и ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населенных мест

2			MF/M ³
		4	5
тредельные:	алифатического	ряда	
			50
4	200		
4	100	25	
4	60		
одо <mark>роды</mark> нег	предельные		
3	3	3	
3	3	3	
4	3	3	
4	1.5	1.5	
одороды аро	матические		
2	1.5	0.1	
3	0.6	0.6	
3	0.02	0.02	
3	0.2	0.2	
4	0.014	0.014	
Прочие вещ	ества	<u> </u>	
3	1	0.5	
4	5	5	
4	0.1	0.1	
2	0.3	0.1	
3	0.2	0.06	
4	0.35	0.35	
			0.1
3	0.05	0.05	
	0.000	0.007	1
4	0.2	0.04	
		0.05	
		0.003	
			
-	شرون	0.2	
4			25
		l	
			1.2
			0.05
4	1		V.02
·			
			0.2
i		1	11 /
	3 2 2 4 3 2 2 2 2 2	3 0.05 2 0.01 2 0.007 4 0.2 3 0.5 2 0.008 2 0.035 2 0.1 2 0.2	3 0.05 0.05 2 0.01 0.03 2 0.007 0.007 4 0.2 0.04 3 0.5 0.05 2 0.008 0.003 2 0.1 0.03 2 0.2 0.2 4 0.2 0.2

Примечание 1. Значения ПДК (ОБУВ) приведены из [4].

Примечание 2. Значения ОБУВ углеводородов предельных алифатического ряда C₁-C ₁₀ приведены из [5] и распространяются только на территорию Республики Беларусь.

Физико-химические свойства некоторых газов и жидкостей

Вещество	Формула	Температура нач.кип. t _{нк} , °C	Плотность жидкости ρ_{*} , ,т/м ³	Молекул. Масса m
1	2	3	4	5
Бутан	C_4H_{10}	-0.5	-	58.12
Пентан	C_5H_{12}	36.1	0.626	72.15
Гексан	C_6H_{14}	68.7	0.660	86.18
Гептан	C ₇ H ₁₆	98.4	0.684	100.21
Изооктан	C_8H_{18}	93.3	0.692	114.24
Цетан	$C_{16}H_{34}$	287.5	0.774	226.45
Этилен	C_2H_4	-103.7	-	28.05
Пропилен	C ₃ H ₆	-47.8	-	42.08
Бутилен	C_4H_8	-6.3	-	56.11
Амилен	C_5H_{10}	30.2	0.641	70.14
Бензол	C ₆ H ₆	80.1	0.879	78.11
Толуол	C7H8	110.6	0.867	92.14
о-Ксилол	C_8H_{10}	144.4	0.881	106.17
м-Ксилол	C_8H_{10}	139.1	0.864	106.17
п-Ксилол	C_8H_{10}	138.35	0.861	106.17
Этилбензол	C ₈ H ₁₀	136.2	0.867	106.17
Изопропилбензол	C_9H_{12}	152.5	0.862	120.20
Спирт метиловый	CH ₄ O	64.7	0.792	32.04
Спирт этиловый	C ₂ H ₆ O	78.37	0.789	46.07
Спирт изобутиловый	$C_4H_{10}O$	108	0.805	74.12
Уксусная кислота	$C_2H_4O_2$	118.1	1.049	60.05
Ацетон	C ₃ H ₆ O	56.24	0.792	58.08
Метилэтилкетон	C ₄ H ₈ O	79.6	0.805	72.10
Фурфурол	$C_5H_4O_2$	161.7	1.159	96.09
Фенол	C ₆ H ₆ O	182	-	94.11
Этиленгликоль	$C_2H_6O_2$	197.2	1.114	62.07
Диэтиленгликоль	$C_4H_{10}O_3$	244.33	1.118	106.12
Аммиак	NH ₃	-33.35	-	17.03
Сернистый ангидрид	SO ₂	-10.1	-	64.06
Сероводород	H ₂ S	-60.8	-	34.08
Формальдегид	CH ₂ O	-21	-	30.03
Хлор	Cl ₂	-33.6	-	7091
Хлористый водород	HCl	-85.1	-	36.46

Примечание. Физико-химические свойства приняты по данным [7, 8]

Приложение 3

Константы уравнения Антуана некоторых веществ

Вещество	Уравнение	Интервал тем	ператур, °С		Константы	
		01	до	A	В	С
	2	3	4	5	6	7
		роды предельн			T - 015 0	240.0
Бутан	2	-60	45	6.83029	945.9	240.0
	2	45	152	7.39949	. 1299	289.1
Пентан	2	-30	120	6.87372	1075.82	233.36
Гексан	2	-60	110	6.87776	1171.53	224.37
Гептан	2	-60	130	6.90027	1266.87	216.76
Изооктан	2	-15	131	6.8117	1259.2	221
Цетан	2	70	175	7.33309	2036.4	172.5
		Углеводороды	непредельны			
Этилен	2	-70	9.5	7.2058	768.26	282.43
Пропилен	2	-47.7	0.0	6.64808	712.19	236.80
	2	0.0	91.4	7.57958	1220.33	309.80
Бутилен	2	-67	40	6.84290	926.10	240.00
Амилен	2	-60	100	6.78568	1014.29	229.78
цис-Пентен-2	2	-60	82	6.87540	1069.47	230.79
транс-Пентен-2	2	-60	81	6.90575	1083.99	232.97
2-Метилбутен-1	2	-60	75	6.87314	1053.78	232.79
2-Метилбутен-2	2	-60	85	6.91562	1095.09	232.84
2-Мегилбутен-2	2	-60	60	6.82618	1013.47	236.82
2-метилоутен-3					1013.47	230.02
Бензол		Углеводороды -20	ароматически 5.5	6.48898	902.28	178.10
	2 2	5.5	160	6.91210	1214.64	221.20
Толуол	1	-92	15	8.330	2047.3	221.20
	2	20	200	6.95334	1343.94	219.38
о-Ксилол	2	25	50	7.35638	1671.8	231.0
	2	50	200	6.99891	1474.68	213.69
м-Ксилол	2	25	45	7.36810	1658.23	232.3
	2	45	195	7.00908	1462.27	215.11
п-Ксилол	2	25	45	7.32611	1635.74	231.4
	2	45	190	6.99052	1453.43	215.31
Этилбензол	2	20	45	7.32525	1628.0	230.7
	2	45	190	6.95719	1424.26	213.21
Изопропилбензол	2	25	60	7.25827	1637.97	223.5
	2	60	200	6.93666	1460.79	207.78
			вещества			
Спирт метиловый	1	7	153	8.349	1835	-
Спирт этиловый	2		-	9.274	2239	273
Спирт изобутиловый	2	-9	116	8.7051	2058.4	246
Уксусная кислота		-35	10	8.502	2177.4	-
	<u>I</u> 2	16.4	118	7.55716	1642.54	233.39
Ацетон	2	15	93	7.2506	1281.7	237
Метилэтилкетон	1	-15	85	7.754	1725.0	-
	2			4.427	1052	273
Фурфурол Фенол	2	0	40	11.5638	3586.36	273
	2	41	93	7.86819	2011.4	222
Этиланияния	1	25	90	8.863	2694.7	
Этиленгликоль					2727.3	
Диэтиленгликоль	1	80 Augusta (500 pr	165	8.1527	1	

Примечание. Константы уравнения Антуана (без звездочек) приняты по [7], а со звездочками - по [9].

Значения постоянной К для водных растворов некоторых газо	В
(в таблице даны значения $ m K_c \cdot 10^{-9}$ в мм.рт.ст.)	

4		Газ													
°C	Метан	Этан	Эти- лен	Ацети- лен	Хлор	Серово- дород	Диоксид серы	Хлористый водород	Амми- ак						
0	17000	9550	4190	550.0	204.0	203.0	12.50	1.850	1.560						
5	19700	11800	4960	640.0	250.0	239.0	15.20	1.910	1.680						
10	22600	14400	5840	730.0	297.0	278.0	18.40	1.970	1.800						
15	25600	17200	6800	820.0	346.0	321.0	22.00	2.030	1.930						
20	28500	20000	7740	920.0	402.0	367.0	26.60	2.090	2.080						
25	31400	23000	8670	1010	454.0	414.0	31.00	2.150	2.230						
30	34100	26000	9620	1110	502.0	463.0	36.40	2.200	2.410						
40	39500	32200	-	-	600.0	566.0	49.50	2.270	-						
60	47600	42900	-	-	731.0	782.0	83.90	2.240							
80	51800	50200	-	-	730.0	1030	128.0		-						
100	53300	52600	-	-	-	1120	-	-							

Примечание. Значения постоянной К_г приняты по [10].

Приложение 5

Значения молекулярной массы паров (т) нефтей и бензинов

t _{ak}	m	tnk	m	t _{es}	m	t _{ss}	m	t _{es}	m	tuk	m
			Па	ры нес	ртей и л		чных п	родукт	ОВ		
10	51.0	20	57.0	30	63.0	40	69.0	50	75.0	60	81
11	51.6	21	57.6	31	63.6	41	69.6	51	75.6	65	84
12	52.2	22	58.2	32	64.2	42	70.2	52	76.2	70	87
13	52.8	23	58.8	33	64.8	43	70.8	53	76.8	75	90
14	53.4	24	59.4	34	65.4	44	71.4	54	77.4	80	93
15	54.0	25	60.0	35	66.0	45	72.0	55	78.0	85	96
16	54.6	26	60.6	36	66.6	46	72.6	56	78.6	90	99
17	55.2	27	61.2	37	67.2	47	73.2	57	79.2	95	102
18	55.8	28	61.8	38	67.8	48	73.8	58	79.8	100	105
19	56.4	29	62.4	39	68.4	49	74.4	59	80.4	110	111
			Па	ры бен	ізинов і	и бензи	иновых	фракц	ий		
30	60.0	36	61.8	42	63.7	48	65.7	54	67.8	60	70
31	60.3	37	62.1	43	64.1	49	66.1	55	68.1	62	71
32	60.6	38	62.5	44	64.4	50	66.4	56	68.5	85	80
33	60.9	39	62.8	45	64.7	51	66.7	57	68.8	105	88
34	61.2	40	63.1	46	65.1	52	67.1	58	69.2	120	95
35	61.5	41	63.4	47	65.4	53	67.4	59	69.5	140	105

Примечание. Значения молекулярной массы паров приняты по формулам [11].

Приложение 6

Атомные массы некоторых элементов

Название	Символ	Атомная масса	Название	Символ	Атомная масса
Азот	N	14.008	Cepa	S	32.066
Водород	Н	1.008	Углерод	С	12.011
Кислород	0	16.0	Хлор	Cl	35.457

Приложение 7

Значения опытных коэффициентов К,

t _ж , °C	Kt	t _{ж,} °C	Kt	t _ж , °C	Kt	t _{ж,} °C	Kt	t _{ж,} °C	Kt					
1	2	3	4	5	6	7	8	9	10					
	Нефти и бензины													
-30	0.09	-14	0.173	+2	0.31	18	0.54	34	0.82					
-29	0.093	-13	0.18	+3	0.33	19	0.56	35	0.83					
-28	0.096	-12	0.185	+4	0.34	20	0.57	36	0.85					
-27	0.10	-11	0.193	+5	0.35	21	0.58	37	0.87					
-26	0.105	-10	0.2	+6	0.36	22	0.60	38	0.88					
-25	0.11	-9	0.21	+7	0.375	23	0.62	39	0.90					
-24	0.115	-8	0.215	+8	0.39	24	0.64	40	0.91					
-23	0.12	-7	0.225	+9	0.40	25	0.66	41	0.93					
-22	0.125	-6	0.235	10	0.42	26	0.68	42	0.94					
-21	0.13	-5	0.24	11	0.43	27	0.69	43	0.96					
-20	0.135	-4	0.25	12	0.445	28	0.71	44	0.98					
-19	0.14	-3	0.26	13	0.46	29	0.73	45	1.00					
-18	0.145	-2	0.27	14	0.47	30	0.74	46	1.02					
-17	0.153	-1	0.28	15	0.49	31	0.76	47	1.04					
-16	0.16	0	0.29	16	0.50	32	0.78	48	1.06					

t _ж , °C	Kt	t _ж , °C	Kt	t _ж , °C	Kt	t _ж , °C	Kt	t _ж , °C	K,			
1	2	3	4	5	6	7	8	9	10			
-15	0.165	+1	0.3	17	0.52	33	0.80	49	1.08			
								50	1.10			
	Нефтепродукты (кроме бензина)											
-30	0.135	-3	0.435	24	1.15	51	2.58	78	4.90			
-29	0.14	-2	0.45	25	1.20	52	2.60	79	5.00			
-28	0.15	-1	0.47	26	1.23	53	2.70	80	5.08			
-27	0.153	0	0.49	27	1.25	54	2.78	81	5.10			
-26	0.165	+1	0.52	28	1.30	55	2.88	82	5.15			
-25	0.17	+2	0.53	29	1.35	56	2.90	83	5.51			
-24	0.175	+3	0.55	30	1.40	57	3.00	84	5.58			
-23	0.183	+4	0.57	31	1.43	58	3.08	85	5.60			
-22	0.19	+5	0.59	32	1.48	59	3.15	86	5.80			
-21	0.20	+6	0.62	33	1.50	60	3.20	87	5.90			
-20	0.21	+7	0.64	34	1.55	61	3.30	88	6.0			
-19	0.22	+8	0.66	35	1.60	62	3.40	89	6.1			
-18	0.23	+9	0.69	36	1.65	63	3.50	90	6.2			
-17	0.24	10	0.72	37	1.70	64	3.55	91	6.3			
-16	0.255	11	0.74	38	1.75	65	3.60	92	6.4			
-15	0.26	12	0.77	39	1.80	66	3.70	93	6.6			
-14	0.27	13	0.80	40	1.88	67	3.80	94	6.7			
-13	0.28	14	0.82	41	1.93	68	3.90	95	6.8			
-12	0.29	15	0.85	42	1.97	69	4.00	96	7.0			
-11	0.30	16	0.87	43	2.02	70	4.10	97	7.1			
-10	0.32	17	0.90	44	2.09	71	4.20	98	7.2			
-9	0.335	18	0.94	45	2.15	72	4.30	99	7.3			
-8	0,35	19	0.97	46	2.20	73	4.40	100	7.4			
-7	0.365	20	1.00	47	2.25	74	4.50					
-6	0.39	21	1.03	48	2.35	75	4.60					
-5	0.40	22	1.08	49	2.40	76	4.70					
-4	0.42	23	1.10	50	2.50	77	4.80					

Значения опытных коэффициентов Кр

Кате-	Конструкция	K _p ^{max}			вуара, V_p , м ³	
гория	резервуаров	или К _р ср	100 и менее	200 - 400	700 - 1000	2000 и более
1	2	3	4	5	6	7
	Режи		ации - «мерн	ик». ССВ - о	гсутствуют	
	Наземный вер-	K_p^{max}	0.90	0.87	0.83	0.80
	тикальный	K _p ^{cp}	0.63	0.61	0.58	0.56
A	Заглубленный	K _p ^{max}	0.80	0.77	0.73	0.70
Λ.	Заглуоленный	Κ _p ^{cp}	0.56	0.54	0.51	0.50
	Наземный го-	${ m K_p}^{ m max}$	1.00	0.97	0.93	0.90
	ризонтальный	${ m K_p}^{ m cp}$	0.70	0.68	0.65	0.63
Б	Наземный вер-	K_p^{max}	0.95	0.92	0.88	0.85
	тикальный	K_p^{cp}	0.67	0.64	0.62	0.60
	Заглубленный	K_p^{max}	0/85	0.82	0.78	0.75
	Заглуоленный	K_p^{cp}	0.60	0.57	0.55	0.53
	Наземный го-	${\rm K_p}^{\rm max}$	1.00	0.98	0.96	0.95
	ризонтальный	${\rm K_p}^{ m cp}$	0.70	0.69	0.67	0.67
В	Наземный вер-	$\mathbf{K_p}^{\mathrm{max}}$	1.00	0.97	0.93	0.90
	тикальный	K_p^{cp}	0.70	0.68	0.650	0.63
	Заглубленный	K_p^{max}	0.90	0.87	0.83	0.80
	Заглуоленный	$K_{ m p}^{\ m cp}$	0.63	0.61	0.58	0.56
	Наземный го-	${K_p}^{\mathrm{max}}$	1.00	1.00	1.00	1.00
	ризонтальный	K_p^{cp}	0.70	0.70	0.70	0.70
	Per	ким экспл	уатации - «ме	рник». ССВ	- понтон	
А,Б,В	Наземный вер-	K _p ^{max}	0.20	0.19	0.17	0.16
A,D,D	гикальный	K _p ^{cp}	0.14	0.13	0.12	0.11
	Режим э	ксплуатаці	ли - «мерник»	. ССВ - плав	ающая крып	иа
А,Б,В	Наземный вер-	K _p ^{max}	0.13	0.13	0.12	0.11
A,b,B	тикальный	K _p ^{cp}	0.094	0.087	0.080	0.074
	F	Режим эксі	ллуатации - «	буферная емі	кость»	
А,Б,В	Все типы кон- струкций	K_p	0.10	0.10	0.10	0.10

Приложение 9

Значения коэффициентов Кв

P _t , мм.рт.ст.	K,	Р,, мм.рт.ст.	$K_{\rm B}$	Р ,, мм.рт.ст.	$\mathbf{K}_{\scriptscriptstyle{\mathbf{B}}}$
540 и менее	1.00	620	1.33	700	1.81
550	1.03	630	1.38	710	1.89
560	1.07	640	1.44	720	1.97
570	1.11	650	1.49	730	2.05
580	1.15	660	1.55	740	2.14
590	1.19	670	1.61	750	2.23
600	1.24	680	1.68	759	2.32
610	1.28	690	1.74		

Приложение 10

Значения опытных коэффициентов Коб

n	100 и более	80	60	40	30	20 и менее
К _{об}	1.35	1.50	1.75	2.00	2.25	2.50

Приложение 11

Компонентный состав растворителей, лаков, красок и т.д. (Сі, % массовый)

Varamanama					Раствори	гели			
Компонент	N 646	N 647	N 648	N 649	РМЛ-218	РМЛ	РМЛ 315	РИД	РКВ-1
Ацетон	7	-	-	-	-	-	-	3	-
Бутиловый спирт	10	7.7	20	20	19	10	15	10	50
Бутилацетат	10	29.8	50	-	9	-	18	18	-
Ксилол	-	-	-	50	23.5	-	25	-	50
Толуол	50	41.3	20	-	32.5	10	25	50	-
Этиловый спирт	15	-	10	-	16	64	-	10	-
Этилцеллозольв	8	-	-	30	3	16	17	-	-
Этилацетат	-	21.2	-	-	16	-	-	9	-
Летучая часть	100	100	100	100	100	100	100	100	

Продолжение приложения 11

				P	астворит	ели		
Компонент	РКБ-2	M	P-4	P-219	AMP-3	РЛ-277	РЛ-278	РЛ-251
Ацетон	-	-	12	23	-	-	-	-
Метилизобутилкетон	-	-	-	-	-	-	-	40
Бутиловый спирт	95	5	-	-	22	*-	20	-
Бутилацетат	-	30	12	-	25	-	-	-
Ксилол	5	-	-	-	-	-	30	-
Толуол	-	-	62	33	30	-	25	-
Этиловый спирт	-	60	-	-	23	-	15	-
Этилцеллозольв	-	-	-	-	-	_	10	-
Этилацетат	-	5	-	-	-	-	-	-
Циклогексанон	_	-	-	33	-	50	-	60
Этилгликоль-ацетат	-	-	-	-	-	50	-	-
Летучая часть	100	100	100	100	100	100	100	100

Продолжение приложения 11

10				Лаки			
Компонент	НЦ-221	НЦ-222	НЦ-223	НЦ-224	НЦ-218	НЦ-243	НЦ-52
Ацетон	3.4	-	-	-	-	-	-
Бутиловый спирт	16.6	7.4	10.05	8	6.3	11.1	33
Бутилацетат	12.5	7.2	12.06	10.2	6.3	7.4	-
Этилацетат	8.3	12.4	3.35	10.5	11.2	5.18	-
Этиловый спирт	8.3	12.2	•	34.05	11.2	7.4	1
Ксилол	-	-	16.75	10.3	16.45	-	-
Толуол	33.2	36.3	16.75	-	16.45	37	-
Этилцеллозольв	-	2.5	8.04	_	2.1	5.92	-
Окситерпеновый растворитель	-	_	-	1.95	-	-	-
Сольвент-нафта	-	-	-	-	-	-	4
Формальдегид	-	-	-	-	-	-	0.76
Летучая часть	83.3	78	68	75	70	74	38.76
Сухой остаток	16.9	22	32	25	30	26	61.24

Продолжение приложения 11

	Грунто	вки	Разравниваю-	Распредели-	Нитропо-	Полиро-
Компонент	НЦ-0140	ВНК	щая жидкость РМЕ	тельная жид- кость НЦ-313	литура НЦ-314	вочная во- да № 18
1	2	3	4	5	6	7
Ацетон	-	2.3	-	-	-	-
Бутиловый спирт	12	5.3	4	2	-	5
Бутилацетат	16	3.5	15	6.4	8.1	1
Этилацетат	12	9.4	20	5.2	-	2
Этиловый спирт	8	9.4	54	76.7	55.64	69
Ксилол	-	17.8	-	-	-	-
Толуол	16	20.6	-	3.6	8.7	-
Этилцеллозольв	12	17.7	-	3	13.6	-
Циклогексанон	4	-	-	-	-	-
Окситерпеновый растворитель	-	-	1	-	-	_
Бензин «галоша»	-	-	~	-	-	20
Летучая часть	80	70	94	96.9	86	97
Сухой остаток	20	30	6	3.1	14	3

Продолжение приложения 11

10		Полиэфирные, поли- и нитроуретановые краски											
Компонент	ПЭ-246	ПЭ-265	ПЭ-232	ПЭ-220	ПЭ-250М	УР-277М	ПЭ-251В	УР-245М					
Ацетон	1-2	1-2	29	31	38	-	-	-					
Бутилацетат	5	5	-	-	-	•	-	26					
Стирол	1-2	1-2	-	-	-	-	3-5	-					
Ксилол	-	-	1	1.5	1	5	1	16					
Толуол	-	-	5	2.5	4	-	1	-					
Метилизобутилкетон	-	-	-	-	-	-	8-11	-					
Циклогексанон	-	-	-	-	-	34	8-11	14					
Эгилгликольацетат	-	-	-	-	-	26	-	15					
Летучая часть	8	8	35	35	43	65	21-29	71					
Сухой остаток	92	92	65	65	57	35	79-71	29					

Продолжение приложения 11

· Constant					Эмал	ти				
Компонент	ПЭ-276	НЦ-25	НЦ-132П	НЦ-1125	НЦ-257	НЦ-258	KB-518	ПФ-115	ПФ-133	MC-17
Бутилацетат	6	6.6	6.4	6	6.2	6.5	7	-	-	•
Этилцеллозольв	-	5.28	6.4	4.8	4.96	-	-	-	-	-
Ацетон	2-4	4.62	6.4	4.2	4.34	-	19.6	-	•	-
Бутанол	-	9.9	12	6	9.3	10.4	-	-	-	-
Этанол	-	9.9	16	9	6.2	5.85	-	-	-	-
Толуол	-	29.7	32.8	30	31	13	-	-	-	-
Этилацетат	-	-	-	-	-	0.75	-	-	-	-
Стирол	2-1	-	-	-	-	-	-	-	-	-
Ксилол	-	•	-	-	-	16.25	-	22.5	25	60
Сольвент	-	-	-	-	-	-	43.4	-	-	-
Уайтспирит	-	-	-	-	-		-	22.5	-	-
Циклогексанон	-	-	-	-	-	3.25	-	-	-	
Летучая часть	9-10	66	80	60	62	65	70	45	50	60
Сухой остаток	91-90	34	20	40	38	35	30	55	50	40

Продолжение приложения 11

					Шпа	тлевк	и, грунтов	ки		
Компонент	ПФ- 002	908 НЦ-	XB- 005	ГФ-032 ГС, ГФ -0163	ГФ- 031	ГФ- 032	ФЛ-03К ФЛ-03Ж	XC-010	AK-070	Клей ХВК-2А
Ацетон	-	4.5	8.5	-	-	-	-	17.4	-	17.5
Бутилацетат	-	9	4	-	-	-	-	8	43.5	8.8
Толуол	_	9	20.5	-	-	-	-	41.6	17.4	35
Этанол	-	-	-	-	-	-	-	-	8.7	_
Бутанол	-	1.5	-	-	-	-	-	_	17.4	-
Ксилол	-	-	-	-	51	61	15	_		-
Сольвент	25	-	-	25	-	-	-	-	-	
Этилацетат	•	6	•	-	-	-	-	_	8.7	-
Уай г-спирит	-	-	-	-	-	_	15	-	-	-
Летучая часть	25	30	33	32	51	61	30	67	87	70
Сухой остаток	75	70	67	68	49	39	70	33	13	

Приложение 12

Значения концентраций паров нефтепродуктов в резервуаре C_1 , удельных выбросов Y_2 , Y_3 и опытных коэффициентов $K_{\rm н}$ п

·····	КЛИМАТИЧЕСКАЯ ЗОНА										
Нефтепро-		1			2			3		Кип при t	
дукг	C_1	y_2	У2	C ₁	y ₂	У3	CL	У ₂	У,	20°C	
	г/м³	r/T	r/T	г/м³	Γ/T	T/T	г/м ³	r/T	г/т		
11	2	3	4	5	6	7	8	9	10	11	
Бензин ав- томоб.	777.6	639,60	880,0	972,0	780,0	1100,0	1176,12	967,2	1331,0	1,1	
Бензин авиацион.	576.0	393,60	656,0	720,0	480,0	820,0	871,20	595,2	992,20	0,67	
БР	288.0	205,00	344,0	344,0	360,0	250,0	430,0	435,60	310,0	0,35	
T-2	244.8	164,00	272,0	306,0	200,0	340,0	370,26	248,0	411,40	0,29	
Нефрас	576.0	377,20	824,0	720,0	460,0	780,0	871,20	570,40	943,80	0,66	
Уайт- спирит	28,8	18,04	29,6	36,0	22,0	37,0	43,56	27,28	44,77	0,033	
Изооктан	221,76	98,4	232,0	277,20	120,0	290,0	335,41	148,80	350,90	0,35	
Гептан	178,56	78,72	184,0	223,20	96,0	230,0	270,07	119,04	278,80	0,028	
Бензол	293,76	114,8	248,0	367,20	140,0	310,0	444,31	173,60	375,10	0,45	
Толуол	100,8	34,44	80,0	126,0	42,0	100,0	152,46	52,08	121,00	0,17	
Этилбен- зол	37,44	10,66	28,0	46,80	13,0	35,0	56,63	16,12	42,35	0,067	
Ксилол	31,68	9,02	24,0	39,6	11,0	30,0	47,92	13,64	36,30	0,059	
Изопро- пилбензол	21,31	9,84	16,0	29,64	12,0	20,0	32,23	14,88	24,20	0,040	
РТ (кроме Т-2)	5,18	2,79	4,8	6,48	3,4	6,0	7,84	4,22	7,26	5,4·10 ⁻³	
Сольвент нефтяной	8,06	3,94	6,96	10,08	4,8	8,7	12,20	5,95	10,53	8,2·10 ⁻³	
Керосин технич.	9,79	4,84	8,8	12,24	5,9	11,0	14,81	7,32	13,31	10.10-3	
Лигроин приборн.	7,2	2,36	5,86	9,0	4,1	7,3	10,89	5,08	8,83	7,3·10 ⁻³	
Керосин осветит.	6,91	3,61	6,32	8,64	4,4	7,9	10,45	5,46	9,56	7,1·10 ⁻³	
Дизельное топ.	2,59	1,56	2,08	3,14	1,9	2,6	3,92	2,36	3,15	2,9·10 ⁻³	
Печное топливо	4,90	2,13	3,84	6,12	2,6	4,8	7,41	3,22	5,81	5,0.10-3	
Моторное топливо	1,15	0,82	0,82	1,44	1,0	1,0	1,74	1,24	1,24	1,1.10-3	
Мазуты	4,32	3,28	3,28	5,4	4,0	4,0	6,53	4,96	4,96	4,3·10 ⁻³	
Масла	0,26	0,16	0,16	0,324	0,2	0,2	0,39	0,25	0,25	$0,27\cdot10^{-3}$	

Примечние. Значения Y_2 (осенне-зимний период года) принимаются равными- Y_3 (весенне-летний период) для моторного топлива, мазутов и масел.

Количество выделяющихся паров бензинов автомобильных при хранении в одном резервуаре G_{xp} , т/год

			Вид ре	зервуара		
$V_{p,M}^3$		Ha3	емный		Заглуб-	Горизон-
A Dara	Cj	оедства сокр	ащения выбр	осов	ленный	тальный
	отсутст.	понтон	пл. крыша	ГОР	JUNIOR	1 a./IBHBIH
	T	1-я кл	иматическая	зона		
100 и менее	0.18	0.040	0.027	0.062	0.053	0.18
200	0.31	0.066	0.044	0.108	0.092	0.31
300	0.45	0.097	0.063	0.156	0.134	0.45
400	0.56	0.120	0.079	0.196	0.170	0.56
700	0.89	0.190	0.120	0.312	0.270	-
1000	1.21	0.250	0.170	0.420	0.360	_
2000	2.16	0.420	0.280	0.750	0.650	-
3000	3.03	0.590	0.400	1.060	0.910	-
5000	4.70	0.920	0.620	1.640	1.410	-
10000	8.180	1.600	1.080	2.860	2.450	-
15000 и более	11,99	2.360	1.590	4.200	3.600	_
		2-я кл	иматическая	вона		
100 и менее	0.22	0.049	0.033	0.077	0.066	0.22
200	0.38	0.081	0.054	0.133	0.114	0.38
300	0.55	0.120	0.078	0.193	0.165	0.55
400	0.69	0.150	0.098	0.242	0.210	0.69
700	1.10	0.230	0.150	0.385	0.330	•
1000	1.49	0.310	0.210	0.520	0.450	-
2000	2.67	0.520	0.350	0.930	0.800	-
3000	3.74	0.730	0.490	1.310	1.120	-
5000	5.80	1.140	0.770	2.030	1.740	-
10000	10.10	1.980	1.330	3.530	3.030	
15000 и более	1480	2.910	1.960	5.180	4.440	-
		*****	иматическая			
100 и менее	0.27	0.060	0.041	0.095	0.081	0.27
200	0.47	0.100	0.066	0.164	0.142	0.47
300	0.68	0.157	0.096	0.237	0.203	0.68
400	0.85	0.180	0.121	0.298	0.260	0.85
700	1.35	0.280	0.180	0.474	0.410	-
1000	1.83	0.380	0.260	0.640	0.550	-
2000	3.28	0.640	0.430	1.140	0.980	_
3000	4.60	0.900	0.600	1.610	1.380	-
5000	7.13	1.400	0.950	1.640	2.140	_
10000	12.42	2.440	1.640	2.500	3.730	_
15000 и более	18.20	3.580	2.410	4.340	5.460	_

Приложение 14

Концентрация загрязняющих веществ (% масс.) в парах различных нефтепродуктов [12].

TY		Концен	трация ком	понентов	C _i , % macc		
Наименова- ние нефте-	углев	одороды					
продукта	предельные C ₁ -C ₁₀	непредельные С ₂ -С ₅	бензол	толуол	этилбен- зол	ксилолы	серовово- дород
Сырая нефть	99,16	•	0.35	0,22		0,11	0,06
Прямогон-							
ные бензи-							
новые фрак-				}	}	1	
ции:		Promposition (17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -				TOTAL OLD FOR THE CONTROL OF THE PERSON OF T	and the following state of the first state of the f
62-86	99,05		0,55	0,40	-	_	
62-105	93,90	······································	5,89	0,21	_		-
85-105	98,64	The control of the Co	0,24	1,12	-	_	_
85-120	97,61	-	0,05	2,34	-	-	-
85-180	99,25	•	0,15	0,35	-	0,25	-
105-140	95,04		•	3,81	-	1,15	-
120-140	95,90		•	2,09	-	2,01	-
140-180	99,57	•	-	-	-	0,43	-
HK-180	99,45	CHILDren and Child	0,27	0,18	-	0,10	
Стабильный катализат	92,84	•	2,52	2,76	-	1,88	-
Уайт-спирит	93,74	-	2,15	3,20	-	0,91	-
Бензин- рафинад	98,88	4	0,44	0,42	-	0,26	-
A-76*)	93,85	2,50	2,00	1,45	0,05	0,15	-
Аи - 93*)	92,68	2,50	2,30	2,17	0,06	0,29	-
Крекинг- бензин	74,03	25,0	0,58	0,27	-	0,12	-
Ловушечный	C ₁₂ - C ₁₉		(Сумма аро	матически	X	0.12
продукт	98,31	-			,56		0,13
Керосин	99,84	-		0,06			
Дизельное топливо	99,57	-			,15		0,28
Мазут	99,31	-		0.	,21		0,48

^{*) -} по данным разработчиков.

Приложение 15

Концентрации паров нефтепродуктов (C, r/m^3) в выбросах паровоздушной смеси при заполнении резервуаров и баков автомашин

		Конструкци	я резервуара	
Нефтепродукт	Вид выброса*	наземный Ср,	заглублен. Ср,	Бак а/м, C_6 , г/м ³
		r/m³	г/м³	
		1-я климатичес	кая зона	
Бензин	макс	464.0	384.0	-
автомобильный	03	205.0	172.2	344.0
автомооильный	вл	248.0	255.0	412.0
Дизельное	макс	1.49	1.24	-
топливо	03	0.79	0.66	1.31
топливо	ВЛ	1.06	0,88	1,76
	макс	0.16	0.13	•
Масла	03	0.10	0.08	0.16
	вл	0.10	0.08	0.16
		2-я климатичес	кая зона	
Γ'	макс	580.0	480.0	-
Бензин автомобильный	03	250.0	210.2	420.0
автомооильный	вл	310.0	255.0	515.0
Попольтико	макс	1.86	1.55	-
Дизельное топливо	03	0.96	0.80	1.6
топливо	вл	1.32	1.10	2.2
	макс	0.20	0.16	-
Масла	03	0.12	0.10	0.20
	вл	0.12	0.10	0.20
		3-я климатичес	кая зона	
г.	макс	701.8	580.0	-
Бензин	03	310.0	260.4	520.0
автомобильный	ВЛ	375.1	308.5	623.1
П	макс	2.25	1.88	-
Дизельное	03	1.19	0.99	1.98
топливо	вл	1.60	1.33	2.66
	макс	0.24	0.19	-
Масла	03	0.15	0.12	0.25
	вл	0.15	0.12	0.24

^{*} макс - максимальный выброс; оз - выброс в осенне-зимний период; вл - выброс в весенне-летний период.

Приложение 16

Давление насыщенных паров углеводородов, Па

				Углеводо	роды				
Температу- ра °С	н-бутан	н-пентан	н-гексан	н-гептан	н-октан	н-нонан	н-декан	бутен-2	пентен-2
-30	44800	5098	956	174	31,5	7,5	-	22600	4860
-20	45500	9021	1587	386	78,9	17,9	-	36900	9690
-10	70000	15260	3480	789	179,6	49,8	8,6	57800	14700
0	•	24400	6110	1512	380,4	114,0	22,9	87100	23800
10		37750	10450	2737	748,8	234,5	54,4	-	37000
20	-	56410	17600	4712	1391,0	461,0	119,7	-	55400
25	-	68160	20350	6079	1859	633,0	174,5	-	67300
30	-	81770	25200	7763	2454	857,0	244,7	-	80750
m_i	58.12	72.15	86.18	100.20	114.23	128.25	142.29	56.08	70.13
K _{i/5,} для С _i % об.	0.4028	1.0000	1.9908	4.3399	9.3131	17.7755	32.8690	0.3998	1.0000
К _{i/5} для С _i % мас	0.500	1.000	1.667	3.125	5.882	10.000	16.667	0.500	1.000

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОХРАНЫ АТМОСФЕРНОГО ВОЗДУХА (НИИ АТМОСФЕРА)

СОГЛАСОВАНО:	УТВЕРЖДАЮ:
Зам. начальника Управления	Директор НИИ Атмосфера
Государственного экологического контроля и	канд. физмат. наук
безопасности окружающей среды	
Госкомэкологии России	
С.В. Маркин	В.Б. Миляев
«27» января 1999 г.	«19» января 1999 г.

9. ДОПОЛНЕНИЕ К «МЕТОДИЧЕСКИМ УКАЗАНИЯМ ПО ОПРЕДЕЛЕНИЮ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ В АТМОСФЕРУ ИЗ РЕЗЕРВУАРОВ»

Введение

Данное «Дополнение к «Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров» (Новополоцк, 1999 г.) разработано специалистами НИИ Атмосфера и учитывает отзывы, замечания и предложения природопользователей и контролирующих органов по охране окружающей среды, основанные на результатах практической апробации «Методических указаний по определению выбросов загрязняющих веществ в атмосферу из резервуаров» (МУ).

В настоящем документе даны рекомендации по использованию утвержденных Минздравом РФ величин ОБУВ для смесей углеводородов предельных, расширен перечень нефтепродуктов, уточнены количественные и качественные показатели индивидуальных компонентов углеводородов, а также приведены дополнительные примеры расчета выбросов загрязняющих веществ в атмосферу для различных видов нефтепродуктов.

С момента опубликования данного методического письма считать утратившими силу:

- методическое письмо НИИ Атмосфера № 257/33-07 от 27.10.95 г.;
- письмо НИИ Атмосфера № 312/33-07 от 9.10.97 г. (в части, касающейся емкостей АЗС и хранилищ нефтепродуктов);
- письмо № 4 «О критериях качества атмосферного воздуха» (сб. «Атмосфера», № 1, 1996 г.);
- временно рекомендованный пересчет смеси предельных углеводородов C_1 - C_{10} на C_5 (см. п.4.4 общих положений MУ);
- раздел 2.6.1 «Методики по определению выбросов вредных веществ в атмосферу на предприятиях Госкомнефтепродукта РСФСР». Астрахань, 1988;
- разделы 2.1.1 и 2.1.2 «Мстодических указаний по расчету валовых выбросов вредных веществ в атмосферу для предприятий нефтепереработки и нефтехимии». РД-17-86. Казань, 1987:
- раздел 2.1 «Методики расчета вредных выбросов в атмосферу от нефтехимического оборудования». РМ 62-91-90. Воронеж, 1990;
- Экспериментально-расчетная методика определения потерь нефти от испарения из резервуара. Уфа, 1990.

По вопросам применения МУ и данного «Дополнения ...» рекомендуем обращаться в НИИ Атмосфера (тел. 247-86-58, Турбин А.С.).

1 Применение критериев качества атмосферного воздуха

В связи с утверждением Минздравом РФ величин ориентировочно-безопасных уровней воздействия (ОБУВ) для смесей углеводородов предельных C_1 - C_5 = 50 мг/м³ и C_6 - C_{10} = 30 мг/м³ (ГН 2.1.6.713-98, утвержденные постановлением Главного государственного санитарного врача РФ № 26 от 3 августа 1998 г.), рекомендуем при нормировании выбросов загрязняющих веществ в атмосферу из резервуаров для хранения нефтепродуктов, а также от нефтехимического и нефтегазового оборудования использовать следующие критерии качества атмосферного воздуха:

Предельные углеводороды

Низкокипящие:

Смесь предельных углеводородов по фракции C_1 - C_5 - ОБУВ = 50 мг/м³. Смесь предельных углеводородов по фракции C_6 - C_{10} - ОБУВ = 30 мг/м³.

Высококипящие:

Смесь предельных углеводородов по фракции C_{12} - C_{19} - ПДК = 1 мг/м³.

Непредельные углеводороды

По амиленам (смесь изомеров)*) - Π ДK=1.5 мг/м³.

Ароматические углеводороды

По бензолу - ПДК = 1.5 мг/м^3 . По толуолу - ПДК = 0.6 мг/м^3 . По ксилолам - ПДК = 0.2 мг/м^3 . По этилбензолу - ПДК = 0.02 мг/м^3 . По стиролу - ПДК = 0.04 мг/м^3 .

Сернистые соединения

По сероводороду*) - ПДК = 0.008 мг/м^3 . По мегилмеркаптану*) - ПДК = $9 \cdot 10^{-6} \text{ мг/м}^3$.

До введения в действие МУ при нормировании выбросов низкокипящих нефтепродуктов (н.п.) применялся менее точный (по суммарному углероду) критерий качества воздуха для бензина нефтяного с малым содержанием серы - ПДК = 5 мг/м³.

Предложенный в МУ пересчет выбросов на группы компонентов и отдельные вещества пропорционально их содержанию в соответствующих н.п. с учетом известных для них санитарно-гигиенических нормативов позволяет дать более строгую, дифференцированную оценку ожидаемого экологического воздействия. Кроме того, исключается дублирование в расчетах выбросов (в частности, ароматических углеводородов), которое возможно из-за перекрывания температурных пределов перегонки отдельных нефтяных фракций.

С помощью рекомендуемого Приложения 14 (уточненного) к МУ* и формулы 1.1 (раздел 1.4 ОНД-86) можно ориснтировочно оценить преимущества предлагаемого подхода.

^{*)} Если имеются в составе выделений (выбросов) загрязняющих веществ в атмосферу.

Допустим, сравниваются выбросы:

а) бензина нефтяного прямогонного среднего состава, % мас.*):

 C_1 - C_5 = 54.80; C_6 - C_{10} = 41.91; бензол = 1.97; толуол = 0.79; ксилол = 0.53;

б) крекинг-бензина состава, % мас.*):

 C_1 - C_5 = 32.00; C_6 - C_{10} = 42.03; амилены = 25.00; бензол = 0.58; толуол = 0.27; ксилол = 0.12;

б) <u>бензинов Аи-92 - Аи-95</u>, среднего состава, % мас.*):

 C_1 - C_5 = 67.67; C_6 - C_{10} = 25.01; амилены = 2.5; бензол = 2.3; толуол = 2.17; ксилол = 0.29; этилбензол = 0.06.

Предположим, что концентрация паров н.п. во всех выбросах одинакова и составляет 5 мг/м³. Тогда безразмерная относительная концентрация:

$$q = \frac{CH.\Pi.}{\Pi Д K}$$

при нормировании (по суммарному углероду с $\Pi Д K = 5 \text{ мг/м}^3$) для всех рассматриваемых случаев одинакова и равна единице.

По рекомендованному в МУ подходу (значения ОБУВ и ПДК соответствующих компонентов приведены выше) для случая:

a)
$$q = \frac{5}{100} \left(\frac{54.8}{50} + \frac{41.91}{30} + \frac{1.97}{1.5} + \frac{0.79}{0.6} + \frac{0.53}{0.2} \right) = 0.39$$

6)
$$q = \frac{5}{100} \left(\frac{32.0}{50} + \frac{42.03}{30} + \frac{25.0}{1.5} + \frac{0.58}{1.5} + \frac{0.27}{0.6} + \frac{0.12}{0.2} \right) = 1.01$$

B)
$$q = \frac{5}{100} \left(\frac{67.67}{50} + \frac{25.1}{30} + \frac{2.5}{1.5} + \frac{2.3}{1.5} + \frac{2.17}{0.6} + \frac{0.29}{0.2} + \frac{0.06}{0.02} \right) = 0.67$$

Таким образом, такой подход действительно позволяет дифференцированно учитывать качественные и количественные отличия составов выбросов.

2. Данные о содержании вредных веществ в парах нефтепродуктов разного вида

Приведенное в МУ Приложение 14 содержит ограниченный перечень нефтепродуктов и по отдельным нефтепродуктам недостаточно взаимоувязаны данные о концентрациях различных углеводородов. Поэтому, с учетом имеющейся дополнительной информации, данное Приложение откорректировано и вместо Приложения 14 МУ следует использовать Приложение 14 (уточненное), приведенное в данном документе.

^{*)} Примечание: см. п. 2 данного документа.

3. Расчет максимальных и валовых выбросов паров нефтепродуктов в атмосферу

При расчетах:

- а) максимальных выбросов паров нефтепродуктов M, г/с, по формуле 6.2.1 на с. 20 (заполнение резервуаров «большое дыхание»), учитывается максимальная из возможных для данной климатической зоны разовых концентраций насыщенных паров этого н.п. C_1 , r/m^3 (принимается по Приложению 12).
- б) <u>годовых (валовых) выбросов</u> паров н.п. G, т/год, <u>в</u> первом слагаемом формулы 6.2.2 (на с.20) учитываются средние удсльные выбросы за соответствующий период года V_2 и V_3 , включающие в себя «большое дыхание» и «малое дыхание» (принимается по Приложению 12 на с. 44 МУ). <u>Во втором слагаемом</u> имеется коэффициент (формула 6.2.3 на с. 21 МУ):

физически означающий снижение (в общем случае изменение) выброса паров данного н.п. по отношению к выбранному в качестве стандарта и наиболее изученному автомобильному бензину.

Для упрощения расчетов валовых выбросов паров какого-либо н.п. при его хранении в резервуаре объемом V_p , м³ (определенного вида, для соответствующей климатической зоны) в МУ предложено «стандартный» (статистически достоверный) показатель выбросов паров бензина (хранимого в том же резервуаре) - G_{xp} , т/год (по Приложению 13) умножать на коэффициент определяемого нефтепродукта $K_{n,n}$ (из Приложения 12).

<u>Например</u>, при хранении в одном резервуаре ($N_p = 1$) печного топлива с $K_{\text{н.п.}} = 5.10^{-3}$ валовый выброс паров печного топлива, определяемый вторым слагаемым формулы 6.2.2, по сравнению с бензином автомобильным снизится в 200 раз. При расчетах ПДВ и ВСВ выбросы паров печного топлива следует отнести к углеводородам предельным C_{12} - C_{19} с ПДК = 1 мг/м³ и сероводороду с ПДК = 0.008 мг/м³, если известно их содержание в паровой фазе.

Приложение 14 (уточненное)

Концентрация загрязняющих веществ (% по массе) в парах различных нефтепродуктов

<u></u>				Угл	еводород	ты			· · · · · · · · · · · · · · · · ·	l · · · · · · · · · · · · · · · · · · ·
	n	редельнь	ie	He-	T		оматиче	ские		ĺ
		в том	числе	пре-			в то	м числе		င့
Наименова- ние нефте- продукта	всего	C ₁ -C ₅	C ₆ -C ₁₀	дель- ные (по ами- ле- нам)	всего	бен- зол	то- луол	кси- лол	этил- бензол	Сероводород
Сырая нефть	99.26	72.46	26.8	-	0.68	0.35	0.22	0.11	-	0.06
Прямогон- ные бензи- новые фрак- ции:										
62-105	93.90	53.19	40.71	-	6.10	5.89	0.21	-	-	-
85-105	98.64	55.79	42.85	-	1.36	0.24	1.12	-	-	-
85-120	97.61	55.21	42.40	-	2.39	0.05	2.34	-	-	-
105-140	95.04	53.75	41.29	+	4.96	-	3.81	1.15	-	-
120-140	95.90	54.33	41.57	-	4.10	-	2.09	2.01	-	-
140-180	99.57	56.41	43.16	•	0.43	-	-	0.43	-	-
Нк-180	99.45	56.34	43.11	_	0.55	0.27	0.18	0.10	_	_
Стабильный катализат	92.84	52.59	40.25	-	7.16	2.52	2.76	1.88	-	-
Бензин-ра- финад	98.88	56.02	42.86	-	1.12	0.44	0.42	0.26	-	-
Крекинг- бензин	74.03	32.00	42.03	25.00	0.97	0.58	0.27	0.12	-	-
Уайт-спирит	93.74	11.88	81.86	-	6.26	2.15	3.20	0.91	-	-
Бензин А-76	93.85	75.47	18.38	2.50	3.65	2.00	1.45	0.15	0.05	-
Бензин (Аи- 92 – Аи-95)	92.68	67.67	25.01	2.50	4.82	2.30	2.17	0.29	0.06	-
Ловушеч- ный про- дукт	98.31*	-	-	_	1.56**	_	-	-	-	0.13
Дизельное топливо	99.57*		-	-	0.15**		_	-	-	0.28
Мазут	99.31	-	-	-	0.21**	-	-	-	-	0.48

^{* -} расчет выполняется по $C_{12}\text{-}C_{19};$ * - не учитываются в связи с отсутствием ПДК (при необходимости можно условно отнести к углеводородам (C_{12} - C_{19}).

4. Примеры расчета выбросов загрязняющих веществ в атмосферу (дополнения и уточнения)

8.1. НПЗ. Бензин-катализат, валовые выбросы

Исходные данные и расчет валовых выбросов согласно МУ (стр. 23, кроме последнего **абз**аца).

Последний абзац на стр. 23 и стр. 24 заменить на:

Кроме того, для расчета могут быть использованы ориентировочные составы паров нефтепродуктов из Приложения 14 (уточненного).

Идентификация состава выбросов
$$(M = 11.8100 \text{ г/c}; G = 324.6692 \text{ т/год})$$

			Угле	водороды			_	
0	пред	дельные Не-			e	<u>ce</u>		
Опреде- ляемый параметр	C ₁ -C ₅	C ₆ -C ₁₀	дель- ные (по ами- ле- нам)	бензол	толуол	Этил- бензол	ксилол	сероводород
С _і мас % стабиль- ный ката- лиз. 1)	52.59	40.25	-	2.52	2.76	-	1.88	-
$M_i^{(2)}$, Γ/c	6.21	4.75	-	0.30	0.33	-	0.22	-
$G_i^{-3)}$, T/Γ	170.7435	130.6793	-	8.1817	8.9609	-	6.1038	-

1)- Приложение 14 (уточненное); 2)
$$M_i = \frac{M \cdot C_i}{100}$$
 3) $G_i = \frac{G \cdot Ci}{100}$

8.2. НПЗ. Бензин автомобильный, валовые выбросы. ССВ-понтон и отсутствие ССВ

Исходные данные и расчет выбросов согласно МУ (стр.25) дополнить: Идентификация состава выбросов (M = 21.8344 г/c; G = 865.3175 т/год)

Опре-	Углеводороды										
деляе-	пред	предельные непре- ароматические									
мый пара- метр	C ₁ -C ₅	C ₆ -C ₁₀	дельные (по ами- ленам)	бензол	толуол	этилбен- зол	кси- лол	Сероводород			
С _і мас % Бензин Аи-92, Аи-95 ¹⁾	67.67	25.01	2.50	2.3	2.17	0.29	0.06	-			
$M_i^{(2)}, \Gamma/c$	14.7753	5.4608	0.5459	0.5022	0.4738	0.0633	0.0131	-			
$G_i^{(3)}$, τ/Γ	588.5604	216.4159	21.3629	19.9023	18.7771	2.5094	0.5192	-			

$$_{^{1)}\text{-}}$$
 Приложение 14 (уточненное); $^{2)}$ $M_i = \frac{M \cdot C_i}{100}$ $_{3)}$ $G_i = \frac{G \cdot C_i}{100}$

8.3. НПЗ. Бензин автомобильный. Идентификация выбросов

Исходные данные и расчет выбросов согласно МУ. Стр. 27 заменить на: Идентификация состава выбросов (М = 48.5209 г/с; G= 1483.4014 т/год)

			· ·	Углеводор	оды			Сер		
Опреде- ляемый	преде	льные	непре-		ароматические					
параметр	1 1		ные (по ами- ленам)	бензол	толуол	этилбен- зол	ксилол	Сероводород		
С _і мас % Бензин А-76 1)	75.47	18.38	2.50	2.0	1.45	0.15	0.05	-		
Mi ²⁾ , Γ/c	36.6187	8.9181	1.2130	0.9704	0.7036	0.0728	0.0243	-		
Gi ³⁾ ,т/г	1119.523	272.6491	37.0850	29.6680	21.5093	2.2251	0.7417	-		

$$_{^{1)}$$
- Приложение 14 (уточненное); $^{2)}$ $M_i = \frac{M \cdot C_i}{100}$ $_{3)}$ $G_i = \frac{G \cdot C_i}{100}$

8.4. НПЗ. Керосин технический*)

Исходные данные и расчет выбросов согласно МУ (стр.28) дополнить примечанием:
^{*)} Примечание. При расчетах ПДВ и ВСВ учитывать ОБУВ = 1.2 мг/м^3 (код 2732 - керосин).

Пример 8.6 МУ (на стр. 30) дополнить:

8.6a. Нефтебаза. Масло минеральное нефтяное. Валовые выбросы. Исходные данные

Наимено- вание про- дукта	V ₄ max, M ³ /час	B, T	Конструкция резервуара	Режим экс- плуата- ции	V _p ,	N _p , шт.	ССВ
Масло МС-20	150	40000	Наземный верти- кальный с нижним и боковым по- догревом	Мерник	5000	8	отсут.

Продолжение исходных данных.

t _{min} , °C	t _{max} , °C	K _t ^{min}	K _t max	С ₂₀ , г/м ³	К _р ^{ср.}	K _p ^{ma}	ρ, τ/м ³	К _{об} .
25	30	1.20	1.40	0.324	0.56	0.80	0.935	2.50

$$M = 0.324 \cdot 1.40 \cdot 0.80 \cdot 150/3600 = 0.01512 \text{ r/cek}^{*}$$
 (5.6.1)

$$n = \frac{40000}{0.935 \cdot 5000 \cdot 8} = 1.0695$$
 (5.6.1) $K_{o6.} = 2,50$ (Прил. 10)

$$G = \frac{0.324*(1.40+1.20)*0.56*2.5*40000}{2*10^6*0.935} = 0.02523_{\text{T/FO},\text{T}}$$
(5.6.2)

 $^{^{77}}$ Примечание. При расчетах ПДВ и ВСВ учитывать ОБУВ = 0.05 мг/м³ (код 2735 - масло минеральное нефтяное).

8.7. НПЗ. Бензин автомобильный. Валовые выбросы

Исходные данные и расчет выбросов согласно МУ (стр.30) дополнить: Идентификация состава выбросов. (M = 1.60 r/c; G = 5.1975 т/год)

	Углеводороды								
Опреде- ляемый пара-	предельные		непре- дель-	ароматические			рово		
метр	C ₁ -C ₅	C ₆ -C ₁₀	ные (по ами- ленам)	бензол	толуол	этил- бензол	кси- лол	сероводород	
С _і мас % Бензин Аи-92, Аи-95 1)	67.67	25.01	2.5	2.3	2.17	0.29	0.06	-	
M _i ²⁾ , Γ/c	1.08	0.40	0.04	0.04	0.03	0.005	0.001	-	
$G_i^{3)}$, T/Γ	3.5172	1.2999	0.1299	0.1195	0.1128	0.0151	0.0031	-	

$$M_i = \frac{M \cdot C_i}{100}$$
 $G_i = \frac{G \cdot C_i}{100}$

8.7а. АЗС. Дизельное топ	иво. Валовые выбросы
--------------------------	----------------------

Исходные данные						Табличные данные			
Наименование продукта	V _{сл} , м ³	Q ₀₃ ,	Q _{вл} ,	Конструк- ция резер- вуара	С _{тах} , г/м ³	С _р оз, г/м ³	С _р вл, г/м ³	С _б ⁰³ , г/м ³	С _б вл г/м ³
Дизельное то- пливо	6.0	4000	4500	заглублен- ный	1.55	0.80	1.10	1.60	2.20

$$M = (C_p^{\text{max}} \cdot V_{\text{cit}})/1200 = (1.55 \cdot 6.0)/1200 = 0.00775 \text{ r/c}$$

$$\begin{split} G = & \left[(C_p^{\ o_3} + C_6^{\ o_3}) \cdot Q_{o_3} + (C_p^{\ B.\pi} + C_6^{\ B.\pi}) \cdot Q_{_{B.\pi}} \right] \cdot 10^{-6} + 50 (Q_{o_3} + Q_{_{B.\pi}}) \cdot 10^{-6} = \left[(0.80 + 1.6) \cdot 4000 + (1.10 + 2.20) \cdot 4500 \right] \cdot 10^{-6} + 50 \cdot (4000 + 4500) \cdot 10^{-6} = 0.44945 \ \text{T/T} \end{split}$$

Идентификация состава выбросов. (M = 0.00775 r/c; G = 0.44945 т/год)

Определяемый па- раметр	Углеводороды								
раметр	Предельные С12-С19	Непредельные	Ароматические	Сероводород					
С _і мас % Дизельное топливо (Прил. 14, уточненное)	99.57	-	0.15	0.28					
$M_i = \frac{M \cdot C_i}{100}, r/c$	0.00773	-	_ *)	0.00002					
$G_i = \frac{G \cdot C_i}{100},_{T/\Gamma}$	0.44819	-	_ *)	0.00126					

 $^{^{*)}}$ Примечание. Условно отнесены к C_{12} - C_{19} .

8.8. ТЭЦ. Мазут топочный (резервуар с нижним и боковым подогревом)*)

Исходные данные и расчет выбросов согласно МУ (стр. 31) дополнить примечанием:

^{*)} Примечание. При расчетах ПДВ и ВСВ учитывать класс опасности - 4, ПДК_{м.р.} = 1 мг/м³ (код 2754 - углеводороды предельные C_{12} - C_{19}) и ПДК _{м.р.} = 0.008 мг/м³ (код 333 - сероводород).

5. Редакционные уточнения

- 5.1. П.4.3 МУ (стр. 10) заменить на:
- «п.4.3. По данной методике могут выполняться расчеты выделений (выбросов) загрязняющих веществ:
 - для нефти и низкокипящих нефтепродуктов (бензин или бензиновые фракции) суммы предельных углеводородов C_1 - C_5 , C_6 - C_{10} и непредельных C_2 - C_5 (по амиленам) и ароматических углеводородов (бензол, толуол, этилбензол, ксилолы);
- для высококипящих нефтепродуктов с учетом их ПДК или ОБУВ (керосин, масло минеральное нефтяное и т.п.), не имеющих ПДК или ОБУВ (дизельное топливо, печное топливо, мазут и др.) суммы углеводородов C_{12} - C_{19} ».

3AO «AMA-3»

предлагает следующие уникальные методики:

«Методика газохроматографического измерения массовой концентрации предельных углеводородов C_1 - C_{10} (суммарно) и ароматических углеводородов (бензола, толуола, этилбензола, ксилолов, стирола) при их совместном присутствии в промышленных выбросах» (Свидетельство о государственной метрологической аттестации № 2420/522-97/0522 от 15.07.97 г. Комитет РФ по стандартизации, метрологии и сертификации).

«Методика газохроматографического измерения массовой концентрации предельных углеводородов C_1 - C_5 (суммарно), а также C_6 и выше (суммарно) в промышленных выбросах» (Свидетельство о государственной метрологической аттестации № 2420/521-97/0521 от 15.07.97 г. Комитет РФ по стандартизации, метрологии и сертификации).

109429, МОСКВА, Капотня, 2-ой квартал МПНЗ ЗАО «ЛЮБЭКОП» для ЗАО «АМА-3»

> тел. (095) 355-03-11 факс (095) 355-61-11

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПРИРОДООХРАННОЙ ДЕЯТЕЛЬНОСТИ

Фирма «Интеграл» предлагает Вашему вниманию программное обеспечение для специалистов-экологов. Программные средства, разработанные фирмой, решают различные задачи, касающиеся вопросов охраны атмосферного воздуха и безопасного обращения с отходами производства и потребления.

Программы **прошли необходимые согласования** в НИИ Атмосфера, ГГО им. А.И. Воейкова, **сертифицированы** Госстандартом России и имеют сертификаты экологического соответствия.

Все программы, реализующие методики по расчету выбросов загрязняющих веществ от различных производств, **согласованы** НИИ Атмосфера в установленном порядке и **входят в список согласованных программ**.

Программы широко используются во всех без исключения регионах России, а также в Белоруссии, Украине, Молдове, Казахстане, Азербайджане, Армении, Грузии и Туркмении.

Программы имеют разный уровень сложности, но их освоение, как правило, не вызывает особых проблем. Если Вы пожелаете научиться основам работы с программами серии «Эколог», а также прослушать лекции ведущих специалистов страны в области экологии - добро пожаловать в Санкт-Петербург, где наша фирма регулярно проводит курсы повышения квалификации специалистов-экологов.

Для тех, кто ценит живое общение с коллегами из разных регионов страны и хочет быть в курсе последних новостей в области экологии, проводятся семинары с насыщенной научной, методической и культурной программой. Такие семинары фирма «Интеграл» проводит как в Санкт-Петербурге, так и в Москве.

И, наконец, фирма «Интеграл» и ее партнеры регулярно проводят семинары по программным средствам в других регионах страны.

Фирма «Интеграл» является также представителем концерна «Dräger» на рынке газоизмерительной техники и средств индивидуальной защиты.

Приборы и оборудование концерна «Dräger» отличает высокая надежность и удобство при эксплуатации, большие сроки службы, превосходный сервис.

Мы будем всегда рады помочь Вам выбрать необходимое в Вашей работе программное обеспечение и научить с ним работать.

Фирма «Интеграл»:

Адрес для писем: 191036, Санкт-Петербург, ул. 4 Советская, 15 Б

Телефон и факс: (812) 740-11-00 (многоканальный)

E-mail: eco@integral.ru Internet: www.integral.ru

Фирма «Интеграл»

Программа для расчета выбросов от автозаправочных станций и резервуаров для хранения нефтепродуктов «АЗС-ЭКОЛОГ»

Программа реализует *«Методические указания по определению выбросов загрязняющих веществ в атмосферу из резервуаров»,* Казань, Управление «Оргнефтехимзаводы», Новополоцк, МП «Белинэкомп», Москва, ЗАО «Любэкоп», 1998 г., с учетом дополнения к *«Методическим указаниям по определению выбросов загрязняющих веществ в атмосферу из резервуаров»,* СПб, НИИ Атмосфера, 1999 г.

Программа предназначена для расчета выбросов загрязняющих веществ нефте- и газоперерабатывающих предприятий по обеспечению нефтепродуктами тепловых электростанций (ТЭЦ), котельных и других отраслей промышленности:

- нефтебазы
- склады горюче-смазочных материалов
- магистральные нефтепроводы
- автозаправочные станции

Программа снабжена ценными и удобными справочниками:

- справочник нефтепродуктов
- справочник концентраций паров нефтепродуктов в выбросах АЗС
- справочник концентраций загрязняющих веществ в парах нефтепродуктов
- вспомогательные справочники по расчетным коэффициентам

Как любая стандартная Windows-программа, «АЗС-Эколог» может быть быстро настроена для работы на вкус любого пользователя. Применены новые элементы оформления программы.

Программа снабжена подробной «помощью», вызывающейся из любого места программы.

Адрес для писем: 191036, Санкт-Петербург, ул. 4 Советская, 15 Б

Телефон и факс: (812) 740-11-00 (многоканальный)

E-mail: eco@integral.ru Internet: www.integral.ru Internet: www.integral.ru