ПОСОБИЕ

по расчету теплопотерь помещений заглубленных сооружений гражданской обороны

(к СНиП II-11-77* и Рекомендациям по проектированию ЗПУ) ГОСУДАРСТВЕННЫЙ ИНСТИТУТ
ПО ПРОЕКТИРОВАНИЮ КОММУНАЛЬНЫХ
ДОРОЖНО-ТРАНСПОРТНЫХ СООРУЖЕНИЙ
(ГИПРОКОММУНДОРТРАНС)
МИНЖИЛКОМХОЗА РСФСР

ПОСОБИЕ

по расчету теплопотерь помещений заглубленных сооружений гражданской обороны (к СНиП <u>П</u>-11-77* и Рекомендациям по проектированию ЗПУ)

Утверждено приказом Гипрокоммундортранса Минжилкомхоза РСФСР от 12 декабря 1986 г. № 85

Москва

чтральный институт
типового проектирования
1989

УДК 699.853:697.133

Рекомендовано к изданию техническим советом Гипрокоммундортранса Минжил-комхоза РСФСР.

Пособие по расчету теплопотерь помещений заглубленных сооружений гражданской обороны (к СНиП II-11-77* "Защитные сооружения гражданской обороны" и Рекомендациям по проектированию ЗПУ)/Гипрокоммундортранс Минжилкомхоза РСФСР. — М.: ЦИТП Госстроя СССР, 1989. — 24 с.

Содержит методику расчета теплопотерь помещений заглубленных сооружений гражданской обороны и способ определения годового расхода теплоты на отопление.

Для инженерно-технических работников проектных организаций.

Табл. 9, ил. 10.

При пользовании Пособием следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале "Бюллетень строительной техники", "Сборнике изменений строительных норм и правил" Госстроя СССР и информационном указателе "Государственные стандарты СССР" Госстандарта СССР.

ПРЕДИСЛОВИЕ

Пособие разработано на основании результатов теплотехнических исследований заглубленных сооружений (3C) котлованного типа и опыта проектирования систем отопления в этих сооружениях.

В Пособии приведены материалы, необходимые и достаточные для определения теплопотерь помещений отдельно стоящих заглубленных одно- и многоэтажных сооружений, а также годового расхода теплоты на отопление.

Теплопотери объектов гражданской обороны, расположенных в подвалах наземных зданий, рассчитываются по указаниям СНиП 2.04.05-86.

Пособие разработано Гипрокоммундортрансом — канд. техн. наук О. В. Усенков.

Замечания и предложения по Пособию просим направлять по адресу: 125212, Москва, Кронштадтский бульвар, 7а, Гипрокоммундортранс.

1. ОБШИЕ ПОЛОЖЕНИЯ

1.1. Приведенные в Пособии значения теплопотерь рассчитаны с учетом изменения в течение года климатических воздействий на отличающиеся большой тепловой инерцией ограждения ЗС при постоянной температуре воздуха в помещениях.

В качестве расчетных при определении поверхности нагревательных приборов систем отопления, выборе оборудования источников теплоснабжения, гидравлическом расчете трубопроводов отопления и тепловых сетей принимаются максимальные теплопотери, которые имеют место после наиболее холодной пятидневки.

- 1.2. Определенные с помощью Пособия максимальные теплопотери относятся к периоду постоянной эксплуатации сооружения. Первоначальный прогрев ("натоп") ограждений и грунтового массива осуществляется, как правило, во время строительства 3С.
- 1.3. Настоящее Пособие распространяется на отапливаемые 3С прямоугольного очертания в плане и разрезе, имеющие толщину покрытия h от 0,5 до 2,5 м, размеры в плане не менее высоты сооружения при вариантах посадки 3С: верх обсыпки в одном уровне или выше поверхности земли, врезка в склон, но при уклоне обсыпки не более 1:6, расположенные в климатических районах с расчетной температурой наружного воздуха $t_{d,\ e}$ от минус 10 до минус 50 °C.

На ЗС, расположенные в районах вечной мерэлоты, а также для помещений с расчетной температурой воздуха в помещениях ниже 5 $^{\circ}$ C Пособие не распространяется.

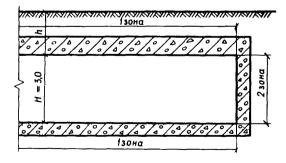
1.4. Расчетная температура воздуха в помещениях t_i , °C, в зависимости от назначения помещения принимается по табл.1. В убежищах, в помещениях для укрываемых, расчетная температура воздуха принимается по условиям эксплуатации этих помещений в мирное время, но не менее чем на 3 °C выше точки росы наружного воздуха по параметрам А для теплого периода года и не ниже 10°C.

Таблица 1

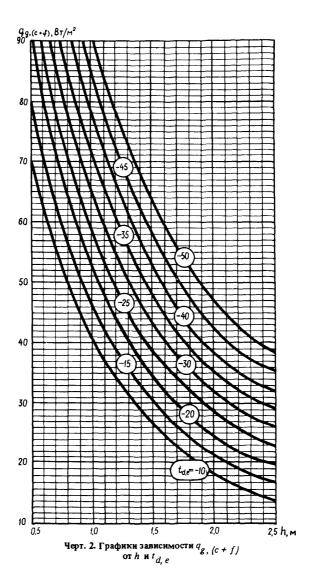
Помещение	t _i ,° C
Кабинеты,штабные и служебные	20
Узлы связи, вычислительные центры, диспетчерские пункты	19
Палаты и изоляторы медпунктов	(21
Операционные медпунктов	23
Для медперсонала	20
Комнаты отдыха	20
Коридоры	18-20

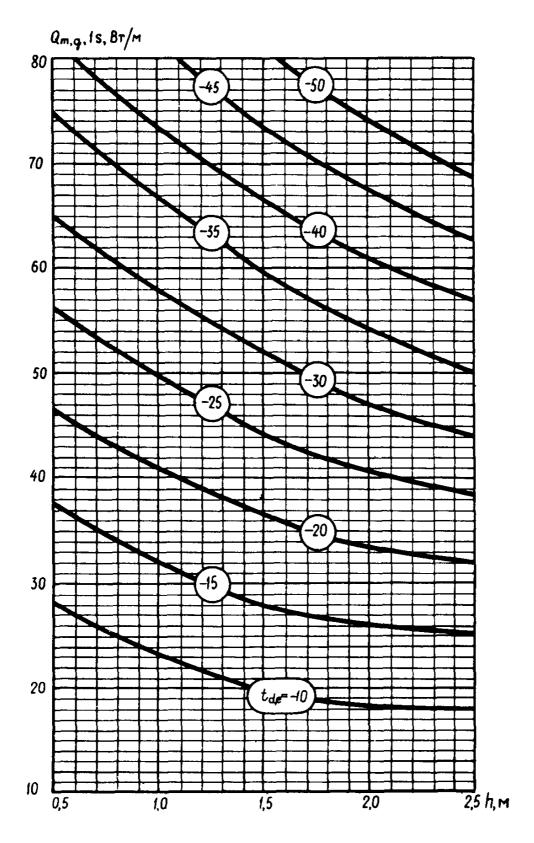
Помещение	t _p °C
Столовые, кухни	20
Машинные залы ДЭС, трансформаторные, аккумуляторные	18
Электрощитовые	19
Санпропускник (без гигиенического душа)	20
Гигиенический душ	22
Санитарные узлы	18
Предфильтров и фильтров-поглотителей	22
Вентиляционные, насосные, холодильные станции	18
Тамбуры входов	22

1.5. Расчетная температура наружного воздуха $t_{d,e}$, °C, принимается по СНиП 2.04.05-86 по параметрам Б для холодного периода года (средняя температура наиболее холодной пятидневки обеспеченностью 0,92).


2. ТЕПЛОПОТЕРИ ЧЕРЕЗ ОГРАЖДЕНИЯ

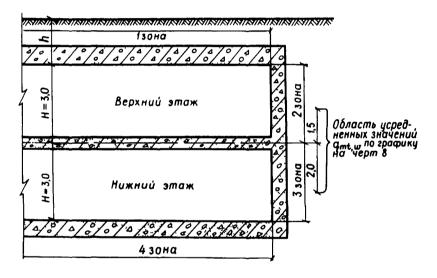
2.1. С целью облегчения вычислений по определению теплопотерь через ограждения ЗС составлены графики теплопотерь через условные зоны, на которые разделен внутренний периметр сооружения.


Для одноэтажных сооружений (черт. 1) — две зоны:


$$1$$
 зона — покрытие и пол q_{c+f} (черт. 2);

$$2$$
 зона — стена $Q_{m,1s}$ (черт. 3).

Черт. 1. Разбивка на зоны ограждений одноэтажного сооружения

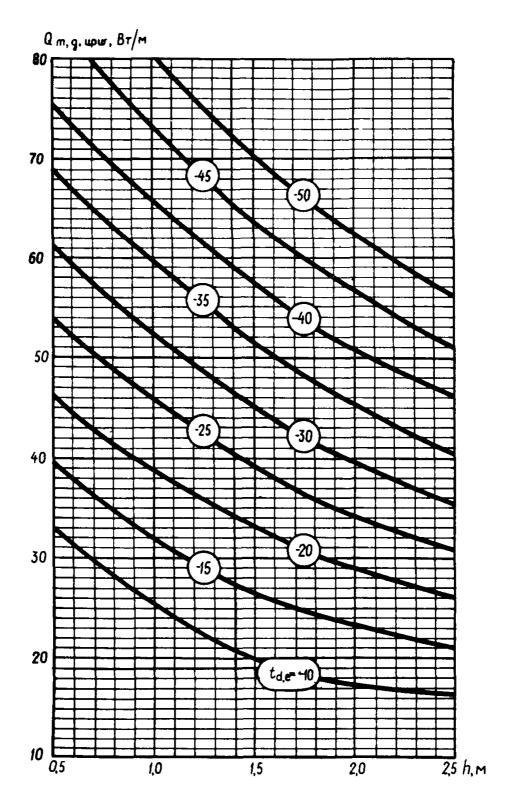


Черт. 3. Графики зависимости $Q_{m,g,1s}$ от h и $t_{d,e}$

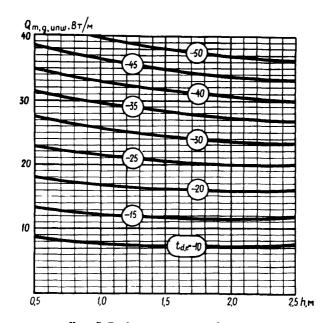
```
Для двухэтажных сооружений (черт. 4) — четыре зоны: 1 зона — покрытие q_c (черт. 5); 2 зона — стена верхнего этажа Q_{m,\ upw} (черт. 6); 3 зона — стена нижнего этажа Q_{m,\ unw} (черт. 7); 4 зона — пол q_f (табл. 2).
```


Таблица 2

<i>t_{d, e}</i> , °C	-10	-15	-20	-25	-30	-35	-40	-45	-50
q_f , Bt/m²	0,35	0,8	1,2	1,65	1,9	2,2	2,5	2,7	2,9

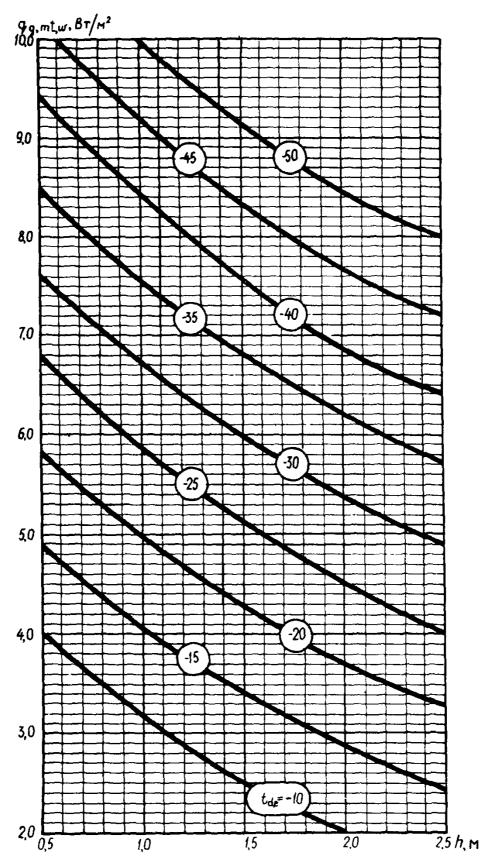


Черт. 4. Разбивка на зоны ограждений двухэтажного сооружения


2.2. На графиках и в таблице для покрытия и пола (см. черт. 2, 5, табл. 2) приведены значения удельных теплопотерь q, $\mathrm{Bt/m^2}$, а для стен (см. черт. 3, 6, 7) — теплопотерь через 1 м стены Q_m , $\mathrm{Bt/m}$, вдоль оси наружной стены в границах соответствующего этажа. В значениях Q_m учтены увеличенные теплопотери в углах.

Черт. 5. Графики зависимости $q_{g,\ c}$ от h и $t_{d,\ e}$

Черт. 6. Графики зависимости $Q_{m,g,upw}$ от h и $t_{d,e}$



Черт. 7. Графики зависимости $Q_{m,g,unw}$ or h w td e

- 2.3. На вспомогательном графике (черт. 8) приведены усредненные значения удельных теплопотерь $q_{mt, w}$, $\mathrm{Br/m^2}$ (через стену на участках вблизи междуэтажного перекрытия двухэтажного 3C), которые используются в расчетах по формулам (4), (5).
- 2.4. На графиках значения теплопотерь определяются в зависимости от толщины покрытия и климатического района строительства сооружения, в табл. 2 - только от климатического района.
- 2.5. Толщина покрытия h, m, измеряется от внутренней поверхности потолка верхнего этажа до наружной поверхности обсыпки (см. черт. 1, 4).
- 2.6. Климатический район стронтельства характеризуется расчетной температурой наружного воздуха $t_{d,e}$, ${}^{\circ}$ С (п. 1.5). Графики на черт. 2, 3, 5–8 и табл. 2 выполнены для значений $t_{d,e}$ от ми-

нус 10 до минус 50 через 5 °C.

Для значений $t_{d,\ e}$, отличных от приведенных в графиках, величины q и Q_m можно определять интерполяцией.

Черт. 8. Графики зависимости $q_{g,mt,w}$ от h и $t_{d,e}$

- 2.7. Значения максимальных теплопотерь на графиках (черт. 3—8) и в табл. 2 получены для следующих усредненных условий и параметров:
- а) усредненный коэффициент теплопроводности грунта и ограждающих конструкций $\lambda = 1.75 \; \mathrm{Bt/(m \cdot {}^{\circ} C)}$;
- б) величина сопротивления тепловосприятию у внутренних поверхностей ограждений R_{ins} , м² · °C/Вт:

стена, потолок - 0,115;

пол и участки ограждений, примы кающие к углу, - 0,17;

в) величина сопротивления теплоотдаче у наружной поверхности покрытия

$$R_{\rm ext} = 0.043 \, \text{m}^2 \cdot {}^{\circ}\text{C/BT};$$

- r) высота этажа H = 3.0 м;
- д) температура воздуха в помещениях $t_i = 20$ °C.
- **2.8.** В тех случаях, когда для проектируемого сооружения условия по одному или нескольким показателям отличаются от приведенных в п. 2.7, к значениям q_g и $Q_{m,\ g}$, найденным по графикам и табл. 2, при необходимости получить более точный результат, следует вводить корректирующие поправки.
- 2.9. Если по данным изысканий коэффициент теплопроводности местных грунтов λ_{soi} не равен 1,75 Bt/(м · °C), а в конструкции покрытия имеются слои (теплоизоляционный, воздушные прослойки и т. п.), коэффициенты теплопроводности которых отличаются от 1,75 Bt/(м · °C), то теплопотери через ограждения следует определять по формулам:
 - а) для графиков черт. 2 и 5

$$q_k = q_g - \frac{R}{R_k} = q_g K_R , BT/M^2;$$
 (1)

б) для графиков черт. 3, 6, 7

$$Q_{m, k} = Q_{m, g} \frac{\lambda_{soi}}{\lambda} = Q_{m, g} K_{\lambda}, Bt/m;$$
 (2)

в) для табл. 2

$$q_k = q_g K_{\lambda}, B_T/M^2, \tag{3}$$

где $q_{k,} Q_{m, k}$ — значения теплопотерь, соответствующие заданным для проектируемого сооружения условиям;

 $q_{g,}\,Q_{m,\,g}$ — значения теплопотерь, определяемые по графикам черт. 2, 3, 5—8 и по табл. 2;

 $R=R_{ins}+R_{ext}+R_h=0,158+0,57h$ — термическое сопротивление покрытия толщиной h, рассчитанное по условиям п. 2.7 а, б, в;

$$R_k = R_{ins} + R_{ext} + \Sigma R_j - \text{действительное} \quad \text{термическое} \quad \text{сопротивление} \quad \text{покрытия};$$

$$\text{эдесь} \quad R_j = \delta_j/\lambda_j - \text{термическое} \quad \text{сопротивление} \quad j\text{-го слоя} \quad \text{покрытия} \quad (\delta_j - \text{толщина} \quad \text{слоя,} \quad \text{м;} \quad \lambda_j - \text{коэффициент} \quad \text{теплонороводности} \quad \text{споя,} \quad \text{Вт/} (\text{м} \cdot \text{°C}), \quad \text{принимаемый} \quad \text{по} \quad \text{СНиП II-3-79**} \quad \text{и табл. 3}); \quad \text{-коэффициент,} \quad \text{учитывающий} \quad \text{действительное} \quad \text{тепльное} \quad \text{термическое} \quad \text{сопротивление} \quad \text{покрытия};$$

$$K_{\lambda} = 0,57 \; \lambda_{soi} - \text{коэффициент,} \quad \text{учитывающий} \quad \text{теплопроводность} \quad \text{местного} \quad \text{грунта,} \quad \text{которая принимается по табл. 3}.$$

Таблица 3

Горная порода, грунт	Средняя плотность, γ, кг/м³	Коэффициент теплопровод- ности, λ, Вт/ (м.° С)	Удельная теплоемкость С, кДж/ (кг.°С)	Коэффициент температуро- проводности а, м²/ч
Базальт	2900	3,50	0.88	0.0048
Гранит	2700	2,70	0.92	0,0041
Диабаз	2700	2,40	0,76	0.0044
Кварцит	2600	4,29	0.80	0,0074
Гнейс	2700	3.13	0.92	0,0045
Сланец	2600	1.97	0,84	0,0035
Глинистый сланец	2400	0.93	1,01	0,0013
Песчаник	2400	1,73	0,84	0,0030
Известняк	2300	1,11	0,88	0,0019
Известняк-ракушечник	1400	0,64	0,92	0,0018
Туф известковый	1300	0,52	0,92	0,0014
Мел	1780	0,68	0,92	0,0014
Грунт, % влажности:		į		i
глинистый – 8	1400	0,73	1,13	0,0019
18	1800	1,54	1,76	0,0017
40	1850	1,74	2,26	0,0015
песчаный – 2	1350	0,56	0,80	0,0021
8	1400	0,90	1,05	0,0024
15	1800	1,88	1,55	0,0024
25	1850	2,04	1,93	0,0022
Кварцевый песок сухой	1600	0,46	0,84	0,0020

2.10. Если высота этажа H не равна 3,0 м, то действительные теплопотери через стены одно- и двухэтажных ЗС, верхних и нижних этажей многоэтажных ЗС следует вычислять по формуле

$$Q_{m, H} = Q_{m, g} + q_{g, mt, w} (H - 3,0), BT/M.$$
 (4)

Теплопотери через стены средних этажей многоэтажных ЗС могут быть вычислены по формуле

$$Q_{m, H} = q_{g, mt, w}H, BT/M.$$
 (5)

2.11. Высоту этажа H, м, следует определять:

одноэтажного 3С - по размеру между внутренними поверхностями потолка и пола;

верхнего (нижнего) этажей многоэтажного 3С - по размеру от внутренней поверхности потолка (пола) до оси междуэтажного перекрытия;

среднего этажа многоэтажного ЗС - по размеру между осями междуэтажных перекрытий.

Значения H и h, м, принимаются с точностью до 0,1 м.

2.12. Если температура воздуха в помещении t_i отличается от 20 °C, то теплопотери через ограждения следует определять по формулам:

$$q_k = q_g K_t, BT/M^2; (6)$$

$$O_{m,k} = O_{m,k} K_{\star}, BT/M, \tag{7}$$

 $Q_{m,k} = Q_{m,H} K_t, \text{Вт/м},$ (7) где $K_t = \frac{t_i - t}{20 - t}$ — коэффициент, учитывающий действительную температуру воздуха в помещении;

t — температура среды, с которой происходит теплообмен через ограждение, °С.

2.13. При определении величины поправки K_t к теплопотерям через покрытие и пол могут быть использованы значения температуры среды $(t_c$ и $t_f)$, вычисленные с учетом теплоинерционных свойств покрытия и приведенные в табл. 4.

Таблица 4

t _{d,e} ,•C		t _c ,°	<i>t_f</i> , ^о С, для ЗС					
	0,5	1,0	1,5	2,0	2,5	3,0	одно- этажных	много- зтажных
Минус 10 " 20 " 30 " 40 " 50	-13,5 -24,0 -34,5 -45,5 -57,0	-10,0 -19,0 -28,5 -38,0 -47,5	-4,5 -13,0 -22,0 -31,0 -40,5	0,5 -8,0 -16,0 -24,0 -34,5	3,0 -5,0 -13,5 -22,5 -31,0	4,0 -4,0 -12,0 -21,0 -29,5	10,0 6,5 3,0 -0,5 -4,0	13,0 9,0 5,0 1,0 -3,0

Для $q_{g,\,(c+f)}$, определяемых по графику черт. 2, используется величина K_t покрытия, так как влияние на результат расчета теплопотерь через пол невелико.

Приближенные значения температуры среды для стен одноэтажных и верхнего этажа многоэтажных сооружений следует определять по формуле

$$t_w = (t_c - t_f)f(H) + t_f, {^{\circ}C}, \qquad (8)$$

где $f(H) = \frac{0.5H}{H+h}$ – для одноэтажных 3C;

$$f(H) = \frac{(n-0.5)H}{nH+h}$$
 — для верхних этажей многоэтажных ЗС;

здесь n — число этажей.

Температура среды для стен средних и нижнего этажей принимается равной t_f для многоэтажных 3С.

- 2.14. Расчетные теплопотери через наружные ограждения для каждого значения t_i и с учетом указаний пп. 2.9—2.11 следует вычислять по формулам:
 - а) для *l* зоны (см. черт. 1, 4)

$$q_d = q_g K_R K_t, Bt/M^2; (9)$$

б) для 2 и 3 зон (см. черт. 1, 4)

$$Q_{m,d} = Q_{m,H} K_{\lambda} K_t, Bt/m; \tag{10}$$

в) для 4 зоны (см. черт. 4)

$$q_{d,f} = q_{g,f} K_{\lambda} K_t, \operatorname{Br/m^2}. \tag{11}$$

3. ТЕПЛОПОТЕРИ ПОМЕЩЕНИЙ ЗС

3.1. Теплопотери расположенных у наружной стены помещений одноэтажных ЗС, верхнего или нижнего этажей многоэтажных ЗС следует определять по формуле

$$Q = Aq_d + lQ_{m,d}, Br, (12)$$

где $A = la, M^2$;

здесь l- длина наружной стены, в пределах помещения, м;

а – размер помещения по нормали к наружной стене, м.

Значения величин q_d и $Q_{m,d}$ вычисляются по формулам (9)—(11), а для упрощенных расчетов определяются по графикам черт. 2, 3, 5—8 и табл. 2.

3.2. Теплопотери расположенных у наружной стены помещений средних этажей многоэтажных сооружений следует определять по формуле

$$Q = lQ_{m,d}, B_{T}. (13)$$

- 3.3. Для определения теплопотерь средних помещений одно- или двухэтажных ЗС, не имеющих в числе ограждений наружных стен, из формулы (12) следует исключить второе слагаемое.
- 3.4. Площадь и линейные размеры наружных ограждений при расчете теплопотерь помещений должны определяться по строительным чертежам слепующим образом:

значения l для неугловых помещений — по размерам между осями внутренних стен, для угловых помещений — по размерам от внутренних поверхностей наружных стен до осей внутренних стен;

значения a — по размерам от внутренних поверхностей наружных стен до осей внутренних стен или между осями внутренних стен.

Линейные размеры следует принимать с точностью до 0,1 м, а площади наружных ограждений — до 0,1 м 2 .

3.5. Для удобства производства вычислений по формулам (12), (13) при определении теплопотерь группы помещений ЗС рекомендуется составлять расчетную табл. 5.

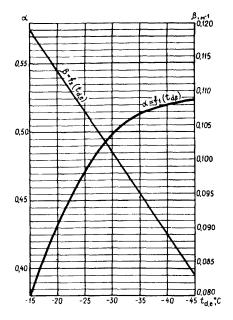
Таблица 5

Помещение		_						
номер	наимено- вание	<i>t_I</i> ,°C	<i>l</i> , m	<i>а</i> , м	A, m ²	. Аq _d , Вт	$lQ_{m,d}$, Вт	<i>Q</i> , B⊤
1	2	3	4	5	6	7	8	9

Графы 1, 2, 4, 5 заполняются по данным строительной части проекта, графа 3 — в соответствии с указаниями п. 1.4, графа 6 — по результатам вычисления A, в графы 7 и 8 записывается результат перемножения величин соответственно из граф 6 и 4 на значения расчетных теплопотерь через ограждения, а в графу 9 — результат сложения величин из граф 7 и 8.

При расчете теплопотерь средних помещений ЗС графа 8 не заполняется, а для расположенных у наружной стены помещений среднего этажа многоэтажных сооружений не используются графы 5—7.

4. ГОДОВОЙ РАСХОД ТЕПЛОТЫ


4.1. Годовой расход теплоты на отопление ЗС может быть определен по формуле

$$Q_{\nu e a} = 31.7 Q \left[\alpha + \beta (1.6 - h) \right], \Gamma \Pi x,$$
 (14)

где Q — теплопотери сооружения, кВт;

h — толщина покрытия, м;

 α, β — эмпирические коэффициенты, определяемые по графикам черт. 9, в зависимости от климатического района $t_{d,e}$.

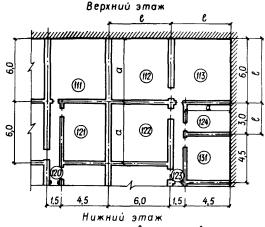
Черт. 9. Графики зависимости коэффициентов α и β от $t_{d,e}$

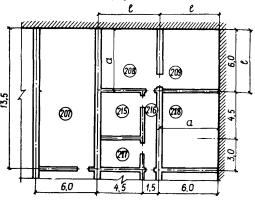
Величина Q_{yea} учитывается при проведении технико-экономического анализа по определению целесообразности применения электроотопления, при проектировании складов топлива для отопительной котельной и др.

5. ПРИМЕРЫ РАСЧЕТОВ

Пример 1. Рассчитать теплопотери помещений двухэтажного ЗС, фрагменты планов верхнего и нижнего этажей которого приведены на черт. 10. Район строительства — Минск, $t_{d,e} = -25\,^{\circ}\mathrm{C}$.

Температура воздуха во всех помещениях $t_i = 20$ °C. Толщина покрытия h = 1,6 м. Высота каждого этажа H = 3,4 м.


Данные о коэффициенте теплопроводности местного грунта отсутствуют (принимаем $\lambda_{soi} = 1,75 \; \mathrm{Bt}//(\mathrm{M}\cdot{}^{\circ}\mathrm{C})$.


Решение:

1. По графикам черт. 5-8 находим для $t_{d,e}=-25\,^{\circ}\mathrm{C}$ и h==1,6 м:

$$q_{g,c} = 34 \text{ BT/m}^2;$$

 $Q_{m, g, upw} = 38 \text{ BT/m};$
 $Q_{m, g, unw} = 20 \text{ BT/m};$
 $q_{g, f} = 1,65 \text{ BT/m}^2;$
 $q_{g, mt, w} = 5,0 \text{ BT/m}^2.$

2. По условиям примера $K_R = K_{\lambda} = K_{t} = 1$.

3. По формуле (4):

$$Q_{m, H, upw} = 38 + 5 (3,4 - 3) = 40 \text{ Bt/m};$$

 $Q_{m, H, unw} = 20 + 5 (3,4 - 3) = 22 \text{ Bt/m}.$

4. Расчетные теплопотери через ограждения равны:

$$q_{d, c} = 34 \text{ BT/m}^2;$$

 $Q_{m, d, upw} = 40 \text{ BT/m};$
 $Q_{m, d, unw} = 22 \text{ BT/m};$
 $q_{d, f} = 1,65 \text{ BT/m}^2.$

5. Составляем расчетную табл. 6 теплопотерь помещений.

Таблица 6

r	Іомещение	. °0			4 2	4- 8-	10 . P-	0.7-
номер	наименование	t _i , °C	<i>l</i> , м	а, м	А, м²	<i>Aq_d</i> , Вт	$lQ_{m,d}$, Вт	<i>Q</i> , Вт
				Ве	рхний этаж			
111, 112	Служебная ком- ната	20	6,0	6,0	36,0	36.34 = 1224	6.40 = 240	1224 + 240 = 1464
113	Приемная	20	6,0	6,0	36,0	1224	(6+6) $40=480$	1704
120, 123	Коридор	20	1,5	7,5	11,2	381	_	381
121	Машбюро	20	4,5	6,0	27,0	918	_	918
122	Служебная ком- ната	20	6,0	6,0	36,0	1224	_	1224
124	Секретная часть	20	3,0	4,5	13,5	459	3.40 = 120	579
131	Комната дежур- ного	20	4,5	4,5	20,2	688	4,5 · 40 = 180	868
	•	•		H	ижний этаж	•	•	•
207	ЛАЗ	20	6,0	13,0	81,0	81·1,65 = 137	$6 \cdot 22 = 132$	137 + 132 = 269
208	Аппаратная	20	6,0	6,0	36,0	59	132	191
209	Телекс	20	6,0	6,0	36,0	59	(6+6) $22 = 264$	323
215	зип	20	4,5	4,5	20,2	33		33
216	Корид ор	20	1,5	7,5	11,2	18	_	18
217	Мастерская	20	4,5	3,0	13,5	22	_	22
218	ЭВМ	20	7,5	6,0	45,0	74	165	239

Пример 2. Рассчитать теплопотери помещений одноэтажного 3C, фрагмент плана которого соответствует плану верхнего этажа на черт. 10.

Район строительства с $t_{d,e} = -31\,^{\circ}$ С. Температура воздуха t_i в помещениях:

Номер помещения	t _i , °C
111	23
121	21
120, 122	20
112, 113, 123, 124	19
131	16

Покрытие состоит из следующих слоев:

обсыпка [местный грунт — суглинок $\lambda_1=1,45$ Вт/(м.°С)] — 0,6 м; дренирующий слой [песок $\lambda_2=0.90$ Вт/(м.°С)] — 0,3 м; защитный слой, стяжка, подуклонка [бетон $\lambda_3=1,86$ Вт/(м.°С)] — 0,2 м;

плита покрытия [железобетон $\lambda_4 = 2,04$ Вт/ (м.° C)] -0,4 м. Общая толщина покрытия h = 1,5 м. Высота этажа H = 3,0 м.

Решение:

1. По графикам черт. 2, 3 для $t_{d,e} = -31$ °C и h = 1,5 м находим:

$$q_{g,(c+f)} = 43.5 \text{ BT/}(\text{M}^2 \cdot ^{\circ}\text{C});$$

 $Q_{m,g,1,5} = 53 \text{ BT/}(\text{M} \cdot ^{\circ}\text{C}).$

2. Вычисляем коэффициенты K_R и K_λ :

$$K_R = \frac{0,158 + 0,57 \cdot 1,5}{0,115 + 0,043 + \frac{0,6}{1,45} + \frac{0,3}{0,90} + \frac{0,2}{1,86} + \frac{0,4}{2,04}} = 0,84;$$

$$K_{\lambda} = 0.57 \cdot 1.45 = 0.83.$$

3. По табл. 4 интерполяцией определяем:

$$t_c = -22.9$$
 °C; $t_f = 2.7$ °C.

4. По формуле (8) вычисляем:

$$t_w = (-22.9 - 2.7) \frac{0.5 \cdot 3}{3 + 1.5} + 2.7 = -5.8 \,^{\circ}\text{C}.$$

5. Вычисляем значения $K_t = \frac{t_i - t}{20 - t}$ (табл. 7):

_	Коэффициент K_{t} при t_{i} , $^{\circ}$ С								
Вид ограждения	23	21	20	19	16				
Покрытие Стена	1,07 1,12	1,02 1,04	1,0 1,0	0,98 0,96	0,91 0,84				

6. По формулам (9)-(11) вычисляем значения расчетных теплопотерь через ограждения (табл. 8):

Таблипа Я

Вид ограждения	Расчетные тешпопотери покрытия $q_{d,(c+f)}$, Вт/м², и стены $Q_{m,d,1s}$, Вт/м, при t_i , ° С							
	23	21	20	19	16			
Покрытие	39,1	37,3	36,5	35,8	33,25			
Стена	49,3	45,7	44,0	42,2	36,95			

7. Составляем расчетную табл. 9 теплопотерь помещений.

Пример 3. Определить для ТЭО теплопотери одноэтажного 3С размером в плане 36×48 м, расположенного в Москве ($t_{d,e} = -26\,^{\circ}$ C).

Высота этажа H = 3,0 м, толщина покрытия h = 1,2 м.

Решение.

1. По графикам черт. 2, 3 находим:

$$q_{g,(c+f)} = 50 \text{ Bt/m}^2;$$

 $Q_{m,g,1s} = 49 \text{ Bt/m}.$

2. Теплопотери ЗС равны:

$$Q = 36 \cdot 48 \cdot 50 + 2(36 + 48)49 = 94630 \text{ Bt}.$$

Пример 4. Определить годовой расход теплоты для 3С по примеру 3.

Решение:

1. По графикам черт. 9 находим коэффициенты
$$\alpha$$
 и β для $t_{d,e} = -26$ °C: $\alpha = 0.48$. $\beta = 1.06$.

2. По формуле (17) вычисляем:

$$Q_{vea} = 31.7 \cdot 94$$
,63[0,48 - 0,106 (1,6 - 1,2)] = 1312,7 ГДж.

Таблица 9

	Помещение				١,,,			0 P-
номер	наименование	t _i ,°C	<i>l</i> , м	а, м	А, м ²	Aq_d , Вт	$lQ_{m,d}$, Вт	Q, B1
111	Операционная медпункта	23	6,0	6,0	36,0	36.39,1=1408	6.49,3=296	1704
112	Аппаратная УС	19	6,0	6,0	36,0	36 · 35,8=1289	6.42,2=253	1542
113	ЭВМ	19	6,0	6,0	36,0	36 · 35,8=1289	(6 + 6) 42,2=506	1795
120	Коридор мед- пункта	20	1,5	7,5	11,2	11,2 · 36,5=409	-	409
121	Палата медпункта	21	4,5	6,0	27,0	27.37,3=1007	_	1007
122	Служебное помещение	20	6,0	6,0	36,0	36.36,5=1314	-	1314
123	Коридор УС	19	1,5	7,5	11,2	11,2 · 35,8 = 401	- 1	401
124	Регулировочная	19	3,0	4,5	13,5	13,5 · 35,8=483	3.42,2=127	610
131	Технологическое помещение	16	4,5	4,5	20,2	20,2·33,25=672	4,5 · 36,5=164	836

основные буквенные обозначения

1. ВЕЛИЧИНЫ

```
q — удельные теплопотери или плотность теплового потока через 1 {\rm m}^2,
      BT/M^2:
Q_m — теплопотери или тепловой поток через 1 м стены в границах этажа.
      BT/M:
 Q — теплопотери помещения, сооружения, Вт;
  t — температура воздуха, °С;
 h — толщина покрытия, м:
 H — высота этажа, м;
 A — площадь ограждения, M^2:
a, l — размеры помещения, м:
  \lambda - \kappaоэффициент теплопроводности, B<sub>T</sub>/(м.°C):
 R – термическое сопротивление, M^2 \cdot {}^{\circ}C/BT:
                             2. ИНДЕКСЫ
   е - наружный;
   i — внутренний;
  d — расчетный:
   д – величина, определяемая по графикам черт. 2, 3, 5—8 и табл. 2:
  k — величина, приведенная к условиям проектируемого сооружения;
   c — покрытие;
   f — пол:
  w — стена;
  1s - \text{одноэтажное сооружение};
ири - верхний этаж двухэтажного сооружения;
unw - то же нижний;
 mt — усредненный:
 ins - внутренняя поверхность ограждения;
 ext — то же наружная;
 soi - rpyht;
   j – номер слоя многослойного покрытия;
```

уеа - годовой.

СОДЕРЖАНИЕ

	Стр
Предисловие	3
1. Общие положения	4
2. Теплопотери через ограждения	5
3. Теплопотери помещений ЗС	16
4. Годовой расход теплоты	18
5. Примеры расчетов	18
Приложение, Справочное, Основные буквенные обозначения	24

Нормативно-производственное издание

ГИПРОКОММУНДОРТРАНС МИНЖИЛКОМХОЗА РСФСР

Пособие по расчету теплопотерь помещений заглубленных сооружений гражданской обороны (к СНиП II-11-77* и Рекомендациям по проектированию ЗПУ)

Подготовлено к изданию Центральным институтом типового проектирования (ЦИТП) Госстроя СССР

Ответственные за выпуск: Л.Н. Шитова, Т.И. Киселева Исполнители: Г.А. Назарова, Е.Д. Рагулина, Г.Н. Каляпина, Н.Г. Новак, Л.А. Евсева. Е.В. Хасаншина. В.А. Замазкина

Подписано в печать 20.07.88. Формат 60 ×84 ¹/₁₆. Бумага офсетная № 1. Печать офсетная. Набор машинописный. Печ. л. 1,5. Усл. печ. л. 1,39. Усл. кр.-отт. 1,62. Уч.-изд. л. 1,3. Тираж 5000 экз. Заказ № 241.

Набрано и отпечатано в Центральном институте типового проектирования (ЦИТП) Госстроя СССР

125878, ГСП, Москва, А-445, ул. Смольная, 22

КЛАССИФИКАТОР СТРОИТЕЛЬНЫХ НОРМ И ПРАВИЛ

Настоящий Классификатор устанавливает разделение строительных норм и правил на 5 частей, каждая из которых делится на группы.

Классификатор предназначен для установления состава и обозначения (шифра)

строительных норм и правил.

Шифр должен состоять из букв "СНиП", номера части (одна цифра), номера группы (две цифры) и номера документа (две цифры), отделенных один от другого точками; две последние цифры, присоединяемые через тире, обозначают две последние цифры года утверждения документа. Например, "СНиП 2.03.05-82"

Номера документам присваиваются в порядке регистрации сквозные в пределах каждой группы или в соответствии с разработанным перечнем документов данной

группы.

1. Организация, управление, экономика

Группы

01 Система нормативных документов в строительстве

02 Организация, методология и экономика проектирования и инженерных изысканий

03 Организация строительства. Управление строительством

04 Нормы продолжительности проектирования и строительства

05 Экономика строительства

06 Положения об организациях и должностных лицах

2. Нормы проектирования

Группы

- 01 Общие нормы проектирования
- 02 Основания и фундаменты
- 03 Строительные конструкции
- 04 Инженерное оборудование зданий и сооружений. Внешние сети

- 05 Сооружения транспорта 06 Гидротехнические и энергетические сооружения, мелиоративные системы и сооружения
- 07 Планировка и застройка населенных пунктов

08 Жилые и общественные здания

- О9 Промышленные предприятия, производственные здания и сооружения, вспомо-гательные здания. Инвентарные здания
- 10 Сельскохозяйственные предприятия, здания и сооружения

11 Склады

12 Нормы отвода земель

3. Организация, производство и приемка работ

Группы

- 01 Общие правила строительного производства
- 02 Основания и фундаменты

03 Строительные конструкции

- 04 Защитные, изоляционные и отделочные покрытия
- 05 Инженерное и технологическое оборудование и сети

06 Сооружения транспорта

07 Гидротехнические и энергетические сооружения, мелиоративные системы и сооружения

08 Механизация строительного производства

09 Производство строительных конструкций, изделий и материалов

4. Сметные нормы

Состав и обозначение сметных норм и правил установлены постановлением Госстроя СССР от 18 июня 1982 г. № 162.

5. Нормы затрат материальных и трудовых ресурсов

Группы

01 Нормы расхода материалов

- 02 Нормы потребности в строительном инвентаре, инструменте и механизмах
- 03 Нормирование и оплата проектно-изыскательских работ

04 Нормирование и оплата труда в строительстве