вода питьевая

МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ СУХОГО ОСТАТКА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

вода питьевая

Метод определения содержания сухого остатка

ΓΟ**С**Τ 18164—72

Drinking water. Method for determination of total solids content

MKC 13.060.20

Дата введения 01.01.74

Настоящий стандарт распространяется на питьевую воду и устанавливает весовой метод определения содержания сухого остатка.

Величина сухого остатка характеризует общее содержание растворенных в воде нелетучих минеральных и частично органических соединений.

1. МЕТОДЫ ОТБОРА ПРОБ

- Пробы воды отбирают по ГОСТ 2874* и ГОСТ 24481**.
- 1.2. Объем пробы воды для определения сухого остатка должен быть не менее 300 см^3 .

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Шкаф сушильный с терморегулятором.

Баня водяная.

Посуда мерная лабораторная стеклянная по ГОСТ 1770, вместимостью: колбы мерные 250 и 500 см 3 ; пипетки без делений 25 см 3 ; чашка фарфоровая выпарительная 50-100 см 3 .

Эксикаторы по ГОСТ 25336.

Натрий углекислый безводный по ГОСТ 83.

Вода дистиллированная по ГОСТ 6709.

Натрий углекислый Na_2CO_3 , х. ч., точный раствор, готовят следующим образом: 10 г безводной соды (высушенной при 200 °C и взвешенной на аналитических весах) растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до 1 дм 3 .

1 см³ раствора содержит 10 мг соды.

3. ПРОВЕДЕНИЕ АНАЛИЗА

- **3.1. Определение сухого остатка без добавления соды** (проводят в день отбора пробы).
 - * На территории Российской Федерации действует ГОСТ Р 51232—98.
 - ** На территории Российской Федерации действует ГОСТ Р 51593—2000.

Издание официальное

Перепечатка воспрещена

*

© ИПК Издательство стандартов, 2003

250—500 см³ профильтрованной воды выпаривают в предварительно высушенной до постоянной массы фарфоровой чашке. Выпаривание ведут на водяной бане с дистиллированной водой. Затем чашку с сухим остатком помещают в термостат при 110 °C и сушат до постоянной массы.

3.1.1. Обработка результатов

Сухой остаток (X), мг/дм³, вычисляют по формуле

$$X = \frac{(m-m_1)\cdot 1000}{V} ,$$

где m — масса чашки с сухим остатком, мг;

 m_1 — масса пустой чашки, мг;

V— объем воды, взятый для определения, см³.

Данный метод определения сухого остатка дает несколько завышенные результаты вследствие гидролиза и гигроскопичности хлоридов магния и кальция и трудной отдачи кристаллизационной воды сульфатами кальция и магния. Эти недостатки устраняют прибавлением к выпариваемой воде химически чистого карбоната натрия. При этом хлориды, сульфаты кальция и магния переходят в безводные карбонаты, а из натриевых солей лишь сульфат натрия обладает кристаллизационной водой, но ее полностью удаляют высушиванием сухого остатка при 150—180 °C.

3.2. Определение сухого остатка с добавлением соды

250—500 см³ профильтрованной воды выпаривают в фарфоровой чашке, высушенной до постоянной массы при 150 °C. После того как в чашку прилита последняя порция воды, вносят пипеткой 25 см³ точно 1 %-ного раствора углекислого натрия с таким расчетом, чтобы масса прибавленной соды примерно в два раза превышала массу предполагаемого сухого остатка. Для обычных пресных вод достаточно добавить 250 мг безводной соды (25 см³ 1 %-ного раствора Na₂CO₃). Раствор хорошо перемешивают стеклянной палочкой. Палочку обмывают дистиллированной водой, собирая воду в чашку с осадком. Выпаренный с содой сухой остаток высушивают до постоянной массы при 150 °C. Чашку с сухим остатком помещают в холодный термостат и затем поднимают температуру до 150 °C. Разность в массе между чашкой с сухим остатком и первоначальной массой чашки и соды (1 см³ раствора соды содержит 10 мг Na₂CO₃) дает значение сухого остатка во взятом объеме воды.

3.2.1. Обработка результатов

Сухой остаток (X), мг/дм³, вычисляют по формуле

$$X = \frac{m - (m_1 + m_2) \cdot 1000}{V} ,$$

где m — масса чашки с сухим остатком, мг;

 m_1 — масса пустой чашки, мг;

 m_2 — масса добавленной соды, мг;

V— объем воды, взятый для определения, см³.

Расхождения между результатами повторных определений не должны превышать 10 мг/дм³, если сухой остаток не превышает 500 мг/дм³; при более высоких концентрациях расхождение не должно превышать 2 отн. %.

С. 3 ГОСТ 18164—72

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 09.09.72 № 1855
- 2. ВВЕДЕН ВПЕРВЫЕ
- 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 83—79	2
ГОСТ 1770—74	2
ГОСТ 2874—82	1.1
ГОСТ 6709—72	2
ГОСТ 24481—80	1.1
ГОСТ 25336—82	2

- Ограничение срока действия снято Постановлением Госстандарта СССР от 25.12.91 № 2120
- 5. ПЕРЕИЗДАНИЕ. Сентябрь 2003 г.