

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГРУНТЫ

МЕТОД ПОЛЕВОГО ОПРЕДЕЛЕНИЯ УДЕЛЬНЫХ КАСАТЕЛЬНЫХ СИЛ МОРОЗНОГО ПУЧЕНИЯ

FOCT 27217-87

Издание официальное

ГРУНТЫ

Метод полевого определения удельных касательных сил морозного пучения

Soils. Field method for determining frost-heave specific tangential forces

ΓΟCT 27217—87

OKCTY 0011

Дата введения 01.07.87

Настоящий стандарт распространяется на грунты без жестких структурных связей, обладающие пучинистыми свойствами, и устанавливает метод полевого определения удельных касательных сил морозного пучения, действующих вдоль боковой поверхности фундамента, при исследованиях грунтов для строительства.

Термины, применяемые в настоящем стандарте, и их поясне-

ния приведены в справочном приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Удельную касательную силу морозного пучения определяют как отношение измеренной при испытаниях на специальных установках максимальной касательной силы морозного пучения, действующей на образец фундамента, к его боковой поверхности, находящейся в промерзающем грунте.

Удельную касательную силу морозного пучения определяют

в целях:

назначения глубины заложения и выбора типа фундаментов

зданий и сооружений;

разработки мероприятий, уменьшающих силы и деформации морозного пучения и исключающих возможность появления не-

допустимых деформаций оснований и фундаментов.

1.2. Максимальные касательные силы морозного пучения определяют не менее чем для двух одинаковых образцов фундамента на испытательных установках, расположенных на площадках, очищенных в течение всего периода испытаний от растительного покрова и снега на расстоянии (в радиусе) не менее 2 м от боковой поверхности образца фундамента.

1.3. За максимальную касательную силу морозного пучения принимают наибольшее значение, полученное в результате испы-

таний образцов фундамента.

1.4. Места расположения испытательных установок назначают в программе исследований на основе инженерно-геологической съемки в зависимости от инженерно-геологических, гидрогеологических и геокриологических (в районах распространения вечномерзлых грунтов) условий с учетом факторов, влияющих на процессы морозного пучения грунта (положение уровня подземных вод, наличие обводненных участков и т. д), и размещения существующих и проектируемых зданий и сооружений.

1.5. Результаты полевых определений удельных касательных сил морозного пучения должны сопровождаться данными о месте проведения испытаний, описанием грунтов и их физико-механическими характеристиками, а также данными о глубине сезонного

промерзания-оттаивания.

2. ПРИБОРЫ И ОБОРУДОВАНИЕ

2.1. В состав установки для определения удельных значений касательных сил морозного пучения должны входить:

образец фундамента;

анкерное устройство (с центральным анкером, с анкерными сваями);

силоизмерительное устройство (шариковый индикатор, тензометрический динамометр с записывающим устройством и др.);

приборы для измерения размеров отпечатков на верхней пластине шарикового индикатора (отсчетный микроскоп МПБ-2, лупа Польди и др.).

Принципиальные схемы установок приведены в рекомендуемом приложении 2, конструкция шарикового индикатора — в рекомендуемом приложении 3.

Примечание. Допускается использовать пружинные динамометры при жесткости пружины динамометра не менее $0.05~\mathrm{MH/mm}$ $(5.0~\mathrm{Tc/mm})$.

2.2. Конструкция установки должна обеспечивать:

неподвижность анкерной тяги или системы упорных балок в течение периода испытаний;

центрированную передачу усилия (касательной силы морозно-

го пучения) на силоизмерительное устройство.

- 2.3. Приборы для измерения размеров отпечатков должны обеспечивать измерение глубины отпечатка с погрешностью не более 0,01 мм, а диаметра отпечатка не более 0,1 мм.
- 2.4. Образец фундамента изготавливают в виде железобетонной стойки квадратного сечения $20{\times}20$ или $30{\times}30$ см. Размеры поперечного сечения и длину образца определяют в зависимости от вида грунта слоя сезонного промерзания-оттаивания и глубины его промерзания.

Примечания

1. В специальных случаях, определенных программой испытаний, допускается изготовлять образцы фундамента из других материалов (дерево, металл и др) и другой формы.

- 2. При применении анкерного устройства с центральной тягой образец должен иметь сквозное осевое отверстие диаметром, превышающим на 10 мм диаметр анкерной тяги.
- 3. Допускается применение в качестве образцов фундамента железобетонных свай.
- 2.5. Все конструкции установки должны быть рассчитаны на нагрузку, превышающую на 50% предполагаемую касательную силу морозного пучения, определяемую по указаниям рекомендуемого приложения 4.
- 2.6. Измерительные приборы должны быть защищены от непосредственного воздействия солнечных лучей, сильного ветра, атмосферных осадков и снежных заносов.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ

3.1. После монтажа анкерного устройства в котлован (скважину, шурф) погружают вертикально образец фундамента на глубину, равную нормативной глубине сезонного промерзания-оттаивания. Верх образца должен выступать над поверхностью грунта не менее чем на 0,5 м. Обратную засыпку котлована следует выполнять с послойным трамбованием грунта слоями высотой не более 0,1 м.

Примечание. В районах распространения вечномерзлых грунтов сроки монтажа установки должны быть назначены из условия обеспечения смерзания нижних концов анкерных свай с вечномерзлым грунтом основания до начала сезонного промерзания грунта.

- 3.2. Верх образца фундамента необходимо выровнить жестким цементным раствором. В случае применения анкерного устройства с центральной тягой зазор между тягой и центральным отверстием в образце следует заполнять смазкой (например, солидолом, техническим вазелином). Не допускается попадение в зазор цементного раствора.
- 3.3. Установку силоизмерительных приборов следует производить не ранее чем через 10 дней после погружения образца фундамента. При этом должно быть обеспечено плотное примыкание прибора к образцу и анкерному устройству.
- 3.4. После монтажа установки производят нивелирование отметки верха образца фундамента (относительно ближайшего репера), а также отметок верха анкерных свай в случае применения двуханкерного устройства.
- 3.5. Все работы по монтажу установки должны быть выполнены до начала промерзания грунта (в период положительных температур воздуха).

4. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

4.1. Снятие показаний динамометров с записывающим устройством или измерение глубины отпечатков на верхней пластине шарикового индикатора производят после промерзания грунта на всю глубину сезонного промерзания-оттаивания.

Примечания.

1. При отсутствии записывающего устройства показания динамометров сле-

дует снимать не реже раза в 7 дней с начала промерзания грунта

2. При демонтаже шарикового индикатора гайка и контргайка должны быть отвернуты при помощи двух гаечных ключей (с приложением встречных моментов вращения) для исключения сдвига пластины индикатора относительно шариков

3. Допускается измерять диаметры отпечатков на верхней пластине шарикового индикатора. При эллипсовидной форме отпечатка измеряют меньший его

диаметр.

4.2. Перед снятием показаний силоизмерительных устройств должно быть произведено нивелирование отметок верха образца фундамента и верха анкерных свай. Допустимые расхождения с отметкой, определенной после монтажа установки, составляют: ±10 мм — при талых грунтах основания и ±6 мм — при вечномерзлых грунтах основания.

4.3. Результаты измерений размеров отпечатков и показания динамометров заносят в журнал, форма которого приведена в ре-

комендуемом приложении 5.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

Удельную касательную силу морозного пучения au_{fh} , МПа (кгс/см²), вычисляют по формуле

$$\tau_{\rm fh} = \frac{F + G}{u \cdot d_{\rm f}},\tag{1}$$

где F — максимальная касательная сила морозного пучения, зарегистрированная показаниями приборов, МН (кгс);

u — периметр поперечного сечения образца фундамента, м (см):

 $d_{\rm f}$ — глубина сезонного промерзания (оттаивания) грунта, м (см);

G — вес образца фундамента, МН (кгс).

 Π р и м е ч а н и е. В случае применения шарикового индикатора силу F, MH (кгс), вычисляют по формуле

$$F = \sum_{1}^{3} F_{\iota}, \tag{2}$$

где $F_i(i=1, 2, 3)$ — силы, МН (кгс), рассчитанные по размерам каждого из трех отпечатков по формулам:

при определении F_i по глубине отпечатка

$$F_i = \pi H_{\rm B} d_{t, i} D; \tag{3}$$

при определении F_i по диаметру отпечатка

$$F_{i} = \pi H_{B} D \left(D - \sqrt{D^{2} - D^{2}_{t, i}} \right) / 2, \tag{4}$$

где $H_{\rm B}$ — твердость металла верхней пластины индикатора, $MH/{\rm Mm}^2$ (кгс/мм²);

D — диаметр шарика, мм;

 $d_{t,i}$ — глубина отпечатка i-го шарика, мм;

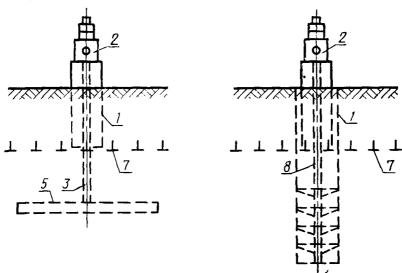
 $D_{t,i}$ — диаметр отпечатка i-го шарика, мм.

ПРИЛОЖЕНИЕ 1 Справочное

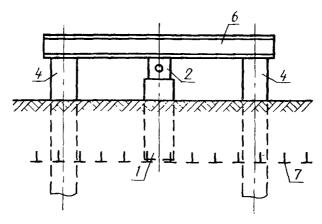
ПОЯСНЕНИЯ ТЕРМИНОВ, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

Морозное пучение грунта — увеличение объема влажного грунта при замерзании в нем воды, приводящее к подъему слоя промерзающего грунта.

Касательная сила морозного пучения— сила, действующая в процессе подъема промерзающего грунта вдоль боковой поверхности фундамента, обусловленная сопротивлением смерзания и трения его с промерзающим грунтом.


Удельное значение касательной силы морозного пучения— касательная сила пучения, отнесенная к площади боковой поверхности фундамента, контактирующей с промерзающим грунтом.

СХЕМЫ УСТАНОВОК ДЛЯ ОПРЕДЕЛЕНИЯ УДЕЛЬНЫХ КАСАТЕЛЬНЫХ СИЛ МОРОЗНОГО ПУЧЕНИЯ

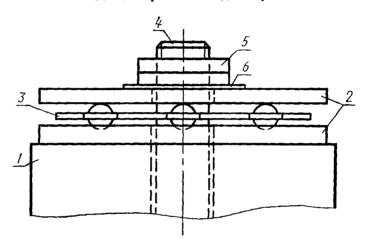

Установка с центральным анкером

а) с анкерной плитой

б) с лопастями

Установка с анкерными сваями

І-образец фундамента;
 2-силоизмерительное устройство;
 3-анкерная тяга;
 4-анкерная свая,
 5-анкерная плита,
 6-система упорных балок;
 7-подошва слоя сезонного промерзания-оттаивания грунта;
 8-анкерная тяга с лопастями (для районов распространения вечномерзлых грунтов)


Черт. 1

ПРИЛОЖЕНИЕ *3* Рекомендиемое

РЕКОМЕНДАЦИИ ПО ИЗГОТОВЛЕНИЮ ШАРИКОВОГО ИНДИКАТОРА

Шариковый индикатор (см. черт. 2) состоит из двух стальных пластин, между которыми в сепараторе расположены три шарика из высокопрочной стали (шарики подшипников — по ГОСТ 3722—81).

Схема шарикового индикатора

1—образец фундамента; 2—пластины индикатора, 3—сепаратор с шариками, 4—анкерная тяга; 5—гайка и контргайка, 6—шайба (полиэтиленовая прокладка)

Черт. 2

Для фиксации положения шариков в нижней пластине устраивают три лунки, расположенные в вершинах равностороннего треугольника, центр которого должен совпадать с центром пластины. При этом расстояние от центра лунки до края пластины должно быть не менее 2D (D— диаметр шарика).

Верхняя пластина со стороны, обращенной к шарикам, должна быть отшли-

фована.

Для измерительной установки с одним анкером пластины должны имет

центральное отверстие для пропуска анкерной тяги.

Размеры пластин и шариков в зависимости от значения предполагаемой касательной силы морозного пучения, действующей на образец фундамента, приведены в табл. 1.

Значение твердости стали $H_{\rm B}$ верхней пластины устанавливают испытанием по методике СТ СЭВ 468—77 с использованием шарика диаметром, равным диаметру шариков, применяемых в индикаторе, и наносят на пластину. Полученное значение должно находиться в пределах 1,0-2,5 к $H/\text{мм}^2$ (100-250 к $rc/\text{мм}^2$).

При сборке и установке шарикового индикатора все его детали должны быть покрыты консервационной смазкой.

Таблица 1

	Размеры шарикового индикатора					
Предполагаемая касательная сила морозного пучения, МН (тс)	Размеры пластин в плане, см	Толщина пластин, мм	Глубина лунки в нижней пластин е , мм	Диаметр шариков, мм		
$F_{\kappa} \leq 0.1(10)$ $0.1(10) < F_{\kappa} \leq 0.2(20)$ $0.2(20) < F_{\kappa} \leq 0.4(40)$	16×16 16×16 20×20	10 14 18	3 4,5 6	10 14 18		

Примечание. Диаметры шариков могут отличаться от указанных в таблице на $\pm 10\,\%$, но в каждом индикаторе должны быть равными между собой

ПРИЛОЖЕНИЕ **4** Рекомендуемое

ОПРЕДЕЛЕНИЕ ПРЕДПОЛАГАЕМЫХ КАСАТЕЛЬНЫХ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТА

Значение предполагаемой касательной силы морозного пучения грунта F_1 , МН (кгс), вычисляют по формуле

$$F_{\rm f} = \tau_{\rm fh} \ u \, d_{\rm f} K_{\rm m}, \tag{5}$$

где $\tau_{\rm fh}$ — удельная касательная сила морозного пучения, МПа (кгс/см²), принимаемая по табл. 2;

 $d_{\rm f}$ — нормативная глубина сезонного промерзания-оттаивания грунта, м (см);

и — периметр поперечного сечения образца фундамента, м (см);

 $K_{\rm m}$ — коэффициент, принимаемый в зависимости от материала образца фундамента, равный:

для бетона — 1,0;

для дерева — 0,9;

для металла — 0,8.

Таблица 2

_	Удельные касательные силы морозного пучения $ au_{fh}$, МПа (кгс/см²), при глубине сезонного промерзания-оттаивания, м				
Грунты	'до 1,5	до 2,5	более 2,5		
1. Пылевато-глинистые при показателе текучести $I_L>0.5$; пески мелкие и пылеватые при степени влажности $S_r>0.95$ 2. Пылевато-глинистые при $0.25 < I_L \le 0.5$; пески мелкие и пылеватые при $0.8 < S_r \le 0.95$;	0,11(1,1) 0,13(1,3) 0,09(0,9) 0,1(1,0)	0,09(0,9) 0,11(1,1) 0,07(0,7) 0,09(0,9)	0.07(0,7) 0.09(0,9) 0.055(0,55) 0.07(0,7)		
крупнообломочные с заполнителем (пылевато-глинистым, мелкопесчаным) более 30% 3. Пылевато-глинистые при $I_L \leqslant 0,25$; пески мелкие и пылеватые при $0,6 < S_r \leqslant 0,8$; крупнообломочные с заполнителем (пылевато-глинистым, мелкопесчаным) от 10 до 30%	0,07(0,7) 0,08(0,8)	0,055(0,55)	0,04(0,4) 0,05(0,5)		

 Π римечание. В знаменателе даны значения au_{fh} для районов распространения вечномерэлых грунтов.

(Первая страница журнала)

Организация-	
--------------	--

ЖУРНАЛ № ПОЛЕВОГО ОПРЕДЕЛЕНИЯ УДЕЛЬНЫХ КАСАТЕЛЬНЫХ СИЛ МОРОЗНОГО ПУЧЕНИЯ

Пункт Объект		
Oubert		
Испытательная установка №		
Дата монтажа установки ———		
Дата окончания испытаний —		
Образец фундамента № ———	Абсолютные отметки:	
Материал образца	верха образцам	1
Размеры образца	верха анкеров — м	4
Вес образца		
Глубина погружения образца ——		
Нормативная глубина сезонного		
промерзания-оттаивания ————		
Описание грунтовых условий ———		

Приборы (тип и номер) для измерения касательных сил морозного пучения (для шарикового индикатора — твердость стали верхней пластины $H_{\rm B}$, диаметр шариков)

Схема размещения установки для испытаний

(Последующие страницы журнала)

	C)бъект	`		· · · · · · · · · · · · · · · · · · ·				1 спытание	№			Стр ——	
	азания приборов для ерения силы мороз- пучения			ндикат а	1 1	оиковог Циамет Гечатка		образца фун- м(см)	погружения $d_{\mathbf{f}},$ м(см)	рундамен- :)			Удельная касательная сила мороз-	
Дата	Показания пр измерения сил ного пучения	1-й отпечаток	2-й мм	3-й г	1-й отпечаток	2-й м м	3-й отпечаток	Периметр обр дамента <i>и</i> , м(Γ лубина погр \circ образца $d_{\mathbf{f}}, \ \mathtt{M}$	Вес образца фундамен та G, MH (кгс)	Сила F, МН (кгс)	F+G, MH (Krc)	ного пучения $\tau_{fh} = \frac{F+G}{ud_f}$, МПа (кгс/см²)	Примечание
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Ответственный	исполнитель	(должность, подпись,	инициалы,	фамилия)
Наблюдатели:	1. (должност	ь, подпись, инициалы,	фамилия)	
	9			

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским институтом оснований и подземных сооружений [НИИОСП] им. Н. М. Герсеванова Госстроя СССР

ИСПОЛНИТЕЛИ

- В. О. Орлов, д-р техн. наук (руководитель темы); И. В. Шейкин, канд. техн. наук; В. Д. Филиппов; О. Н. Сильницкая
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Государственного строительного комитета СССР от 29.01.87 № 18
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер приложения			
ГОСТ 3722—81	Приложение 3			
СТ СЭВ 468—77	Приложение 3			

Редактор В. П. Огурцов Технический редактор Г. А. Теребинкина. Корректор А. С. Черноусова

Сдано в наб. 05 05.87 Подп. в печ. 15 06.87 1,0 усл. п. л. 1,0 усл. кр.-отт. 0.62 уч.-изд л. Тир. 6000

	Единчил					
Величиста	Наименование	Обозначение				
	международное ру					
основня	Е ЕДИНИІ	пр си	•			
Длина	метр	m	M			
Macca	килограмм	kg	KP			
Время	секунда	s	C			
Сила электрического тока	ампер	A	A			
Термодинамическая температура	кельвин	K	K			
Количество вещества	моль	mol	моль			
Сила света	кандела	cd	кд			
ДОПОЛНИТЕ	, Льные ед	, Гиницы сі	И			
Плоский угол	радиан	ra d	рад			
Телесный угол	стерадиан	sr	ср			

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		Единица	Выражение через	
Зеличина	Наименова-	Обезн	ачение	есновные и до-
w 40.127 (27.17.10	ние	междуна- родное	руссное	лолнительные единицы СИ
Частота	герц	Hz	Гц	c-1
Сила	ньютон	N	Н	W-KL-C-5
Давление	паскаль	Pa	Па	M-1 - Kr · C-2
Энергия	джоуль	J	Дж	M2.KL.C-2
Мощность	ватт	W	Вт	M2·KT·C→
Количество электричества	кулон	C	Кл	c-A
Электрическое напряжение	вольт	[V]	В	M2-KT-C-3-A-1
Электрическая емкость	фарад	F	Ф	w-;kt-(· c 4·A3
Электрическое сопротивление	ОМ	Ω	OM	M²·Kr·c→·A→
Электрическая проводимость	сименс	S	CM	M-3KL-1·C3·A2
Поток магнитной индукции	вебер	Wb	B 6	M2 - KF - C-2-A-1
Магнитная индукция	тесла	Т	Тл	кг-с-² - А−1
Индуктивность	генри	Н	Гн	M ² · K Γ · C ² · A ⁸
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	lx	лк	м-2 ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bg	Бк	c-1
Поглощенная доза ионизирую-	Йєцт	Gy	Гр	W 2 · C-2
щего излучения	l	{		
Эквивалентная доза излучения	тдэвик	Sv	3≥	M2 · C-2