ВРЕМЕННАЯ ИНСТРУКЦИЯ

ПО ПРОЕКТИРОВАНИЮ СООРУЖЕНИЙ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТНЫХ СТОЧНЫХ ВОД

CH 496-77

Утверждена постановлением Государственного комитета СССР по делам строительства от 23 моня 1977 г. № 78

«Временная инструкция по проектированию сооружений для очистки поверхностных сточных вод» составлена в развитие главы СНиП 11-32-74 «Канализация. Наружные сети и сооружения».

Временная инструкция разработана проектным институтом Мосинжпроект Главного Архитектурно-планировочного Управления Москвы,

Редакторы — инженеры B.~B.~TAMБОВЦЕВ (Госстрой СССР) и B.~E.~XAЗАНОВ (Мосинжпроект).

Государственный	Строительные нормы	CH 496-77
комитет Совета Министров СССР по делам строительства (Госстрой СССР)	Временная инструкция по проектированию сооружений для очистки поверхностных сточных вод	

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Требования настоящей Инструкции должны выполняться при проектировании сооружений для очистки поверхностных сточных вод с селитебных территорий городов и других населенных пунктов (жилых кварталов и микрорайонов, участков зданий управлений и общественных зданий, улиц и площадей) перед сбросом их в водоем из коллекторов при раздельной системе канализации.
- 1.2. При проектировании общесплавной и полураздельной систем канализования следует руководствоваться указаниями главы СНиП по проектированию наружных сетей и сооружений канализации.
- 1.3. Поверхностные сточные воды с внеселитебных территорий (промышленных предприятий, складских хозяйств, автохозяйств и др.), а также с особо загрязненных участков, расположенных на селитебных территориях городов (бензозаправочные станции, стоянки автомашин, крупные автобусные станции и др.), должны подвергаться очистке на локальных или кустовых очистных сооружениях перед сбросом их в водоемы или сеть дождевой канализации.
- 1.4. Очистные сооружения должны размещаться на устьевых участках главных коллекторов дождевой канализации перед выпуском в водоем. В случае, когда по условиям сложившейся застройки такое размещение не представляется возможным, очистные сооружения долж-

Внесена постановлением Государственного комитета Совета Министров СССР по делам строительства от 23 июня 1977 г. № 78	Срок введения в действие 1 января 1978 г.
---	---

ны располагаться выше по течению или на наиболее крупных притоках к главному коллектору дождевой канализации.

В этих случаях с части водосборного бассейна поверхностный сток сбрасывается в водоем без очистки.

- 1.5. Допускается сбрасывать в водоемы поверхностные воды без очистки:
 - с городских лесопарков;
- с подосборов площадью до 20 га, имеющих самостоятельный выпуск в водоем.

Эти требования не распространяются на самостоятельные выпуски в водоемы, предназначенные к использованию для питьевего этакснабжения.

1.6. На очистные сооружения должил отводиться наиболее загрязнениая часть поверхностного стока, которая образуется в период выпадения дождей, таяния снежного покрова и мойки дорожных покрытий.

Пиковые расходы, относящиеся к наиболее интенсивной части дождя и наибольшему стоку талых вод, сбрасываются в водоем без очистки.

1.7. По коллекторам дождевой канализации на очистные сооружения могут поступать условно-чистые воды, которые допускается сбрасывать в городскую сеть дождевой канализации:

условно-чистые производственные воды;

конденсационные и от охлаждения производственной аппаратуры, не требующие очистки;

грунтовые (дренажные) воды;

воды от мойки автомащин после их очистки на ло-кальных очистных сооружениях.

1.8. В районах нового строительства очистные сооружения должны входить в состав проектов коллекторов дождевой канализации.

В проектах планировки этих районов должны быть предусмотрены места для размещения очистных сооружений.

1.9. На сооружениях для очистки поверхностных сточных вод следует учитывать предельно допустимые накопления загрязнений, при этом:

слой твердого осадка не должен превышать проектную глубину осадочной части сооружения;

слой маслонефтепродуктов не должен превышать $2-5\,\mathrm{MM};$

задержанный в решетках плавающий мусор не должен закрывать площадь прозоров более чем на 50%.

2. ОЧИСТНЫЕ СООРУЖЕНИЯ

2.1. Для очистки загрязненной части поверхностных вод перед выпусками в водоемы надлежит устраивать сооружения следующих типов:

пруды-отстойники;

стационарные щитовые заграждения в акватории волоема:

сооружения закрытого типа (подземные).

- 2.2. Тип очистного сооружения следует принимать в зависимости от площади водосборного бассейна, характера застройки и планировочных условий с учегом развития коллекторов дождевой канализации. При этом следует учитывать, что наиболее эффективным сооружением для очистки поверхностных вод являются пруды-отстойники.
- 2.3. Очистные сооружения должны устранваться для каждого водосборного бассейна, имеющего самостоятельный выпуск.

В отдельных случаях допускается устройство общих очистных сооружений для нескольких водосборов, объединенных коллектором, подводящим воду на очистное сооружение.

- 2.4. Очистные сооружения следует принимать в виде отстойников, оборудованных устройством для улавливания плавающего мусора и нефтепродуктов.
- 25. Для улавливания плавающего мусора в головной части сооружения должны устанавливаться съемные решетки или другое оборудование, позволяющее механизировать удаление накопленного мусора.
- 2.6. Влекомые и взвешенные твердые частицы должны задерживаться в осадочной части очистного сооружения.

Осаждение твердых взвешенных частиц должно быть обеспечено при скорости протекания воды v=10 мм/с и времени отстоя, указаниом в п. 3.5.

2.7. Нефтепродукты должны задерживаться в отстойных отсеках при помощи полупогружных щитов, устанавливаемых на глубине 0,6—0,8 м от уровня воды в сооружении.

Всилытие частиц пефтепродуктов, содержащихся в толще воды, должно обеспечиваться режимом работы отстойного сооружения.

Нефтепродукты, задержанные перед полупогружными щитами, по мере накопления должны отводиться при помощи специальных приспособлений и трубопроводов в подземные емкости-накопители.

- 2.8. Очистные сооружения могут состоять из нескольких параллельно или последовательно расположенных секций.
- 2.9. При параллельном расположении секций вода должна равномерно распределяться по всем секциям.
- 2.10. При последовательном расположении нижняя секция должна служить для дополнительной очистки воды, прошедшей через верхнюю секцию.

Верхняя секция может служить одновременно регулятором расходов, поступающих в нижнюю секцию.

2.11. Для подачи воды на очистное сооружение на коллекторе дождевой канализации должно предусматриваться устройство распределительной камеры, имеющей порог, направляющий воду из коллектора в трубопровод, подводящий ее к очистному сооружению.

Высота порога должна соответствовать высоте наполнения коллектора при расчетном расходе воды, направляемой на очистное сооружение.

2.12. Распределительную камеру рекомендуется устранвать перед перспадом на коллекторс.

При одновременном строительстве коллектора и очистного сооружения следует предусматривать перепад на коллекторе.

- 2.13. В конце подводящего трубопровода следует предусматривать устройство (поперечный лоток, труба), обеспечивающее равномерное распределение воды по ширине отстойника или между его секциями, а также возможность выключения отдельных секций на время очистки их от наконленных загрязмений.
- 2.14. Водосброс из очистного сооружения должен иметь порог водослива на отметке расчетного горизонта воды в сооружении.

Отводящий трубопровод водосброса должен иметь выпуск в низовой участок коллектора или непосредственно в водоем.

2.15. Площадки очистных сооружений должны иметь искусственное освещение и подъездные дороги.

Площадки для прудов-отстойников должны быть озеленены и в случае необходимости иметь ограждения.

Пруды-отстойники

2.16. Пруды-отстойники устранваются:

изолированные от водоема с водосбросным устройством в водоем или в коллектор дождевой канализации (рис. 1—3 прил. 1);

каскадного типа с двумя последовательными секциями, расположенными в разных уровнях (рис. 4 прил. 1);

на сопряжении с водоемом и устройством отделяющей плотины сборно-разборного типа (рис. 5 прил. 1).

2.17. Пруды-отстойники должны состоять из следующих основных элементов:

отсеков для задержання плавающих нефтепродуктов; разделительных продольных и поперечных стенок или дамб;

водосбросных устройств для сброса воды из верхних секций в нижние и перепуска очищенной воды в водоем или коллектор.

- 2.18. Кроме указанных основных элементов, прудотстойник должен иметь оборудование для сбора нефтепродуктов и подземные емкости-накопители для них.
- 2.19. Секции в прудах-отстойниках образуются продольными и поперечными разделительными стенками или дамбами. В каждой верхией секции пруда должим быть устроены отсеки для задержания нефтепродуктов, ограждаемые полупогружными щитами. В случае, когда пруд-отстойник разделен на секции поперечной стенкой или дамбой, отсеки для задержания нефтепродуктов допускается устраивать только в верхней секции пруда, а нижняя секция используется для дополнительного отстаивания. Ширину отсеков рекомендуется принимать не менее 6 м. Длина их определяется расчетом.

При проектировании прудов-отстойников должна предусматриваться возможность самостоятельной работы каждой секции за счет специальных устройств по переключению загрязненного расхода в одну из секций.

- 2.20. При площади водосборного бассейна не более 100 га допускается устраивать односекционные прудыотстойники.
- 2.21. Максимальное отношение ширины пруда-отстойшка к его длине следует принимать равным 1:4.

Стационарные щитовые заграждения

- 2 22. Стационарные щитовые заграждения (рис. 6 прил. 1) устраиваются в русле реки ниже существующих выпусков коллекторов, где по планировочным условиям и другим причинам устройство очистных сооружений типа прудов-отстойников или сооружений зыкрытого типа не представляется возможным.
- 2 23. Постоянный расход и загрязненная часть поверхностных вод от коллектора к щитовому заграждению подводится трубопроводом или направляющей стенкой типа «шпора».
- 2.24. В стационарных щитовых заграждениях должен полностью задерживаться плавающий мусор и частично нефтепродукты и твердый сток.

Глубина погружения стационарных щитов — 0,8 м. 2.25. Расположение стационарного щитового заграждения в русле реки и его размеры должны быть согласованы с речным пароходством и Республиканским

бассейновым управлением или Инспекцией по регули-

рованию использования и охране вод.

2.26. Размеры щитового заграждения должны назначаться из условия захода в его акваторию плавередств с механизмами для производства работ по очистке от донных отложений и сбора плавающих загрязнений.

2.27. Конструкцию щитового заграждения следует принимать из железобетона с учетом возможности швартовки плавередств, производящих очистку огражденной акватории.

Стационарные щитовые заграждения должны быть оборудованы предупредительными сигнальными огнями.

Сооружения закрытого типа

- 2.28. Очистные сооружения закрытого типа (подземные) (рис. 7 прил. 1) следует предусматривать на выпусках сети дождевой канализации в городские водоемы и на уствевых участках притоков к тлавным коллекторам при площади водосборного бассейна до 300 га.
- 2.29. В зависимости от размеров водосборного бассейна очистное сооружение закрытого типа может состоять из двух или более секций.
- 2.30. Каждая секция сооружения должиа состоять из входной, проточной, осадочной частей и отсека для фильтров доочистки.

2.31. Загрязненные воды надлежит подводить к очистному сооружению специальным трубопроводом, подключенным к распределительному устройству.

На входе следует предусматривать установку решетки с прозорами 10 мм для улавливания и сбора плава-

ющего мусора.

Перед выходом воды из проточной части надлежит предусматривать оборудование для сбора и удаления нефтепродуктов в подземные емкости-накопители.

2.32. Фильтры доочистки следует принимать для задержания эмульгированных нефтепродуктов, при этом фильтрация воды производится снизу вверх в направлении сброса.

Площадь фильтров доочистки должна быть не менее площади поперечного сечения протошной части каждой секции сооружения.

В качестве заполнителей фильтров доочистки рекомендуется применять материалы, обладающие высокой адсорбирующей способностью: сипрон, визапрон, древесную стружку, вспученный вермикулит и др.

- 2.33. Технологическая схема очистного сооружения должна учитывать местные потери напора в соответствии с указаниями п.4.30.
- 2.34. В сооружениях закрытого типа должны предусматриваться съемные перекрытия в местах установки фильтров доочистки и мусороулавливающих решеток.
- 2.35. Конструкции очистных сооружений закрытого типа следует выполнять из сборно-монолитного или монолитного железобетона и рассчитывать на восприятие постоянных нагрузок и временной, принимаемой в соответствии с главой СНиП на проектирование мостов и труб.

3. РАСЧЕТНЫЕ ПОКАЗАТЕЛИ ПО ЗАГРЯЗНЕНИЯМ ПОВЕРХНОСТНЫХ ВОД И СТЕПЕНИ ИХ ОЧИСТКИ

3.1. Количество загрязнений в поверхностном стоке рекомендуется принимать по табл. 1, при этом расчетные показатели допускается уточнять в зависимости от местных условий и характеристик поверхностного стока по отдельным видам (дождевые, талые, моечные воды) с учетом возможного изменения загрязненности поверхностного стока, зависящего от места отбора проб (ули-

		Количество загрязнений в поверхностном стоке для расчета очи- стных сооружений									
<i>№</i> п.п.	Характерные зоны в водосборном бассейне		пешенні ества, м		Эфирорастворимые вещества, мг/л			Плавающий мусор, м ³ /1000 га			
		дождевые воды	талые воды	моечные воды	дождевые воды	талые воды	мосчице воды	дождевые воды	талые воды	МОЕЧНЫЕ ВОДЫ	
1	Жилые кварталы и микрорайоны	250	3500	200	35	40	75	0,1	0,3	0,1	
2	Территории промышленных предприятий и сооружений с повышенным загрязнением, расположенные в населенных пунктах	2000	4500	2000	250	70	150	0,2	0,3	0,2	
3	Площади и улицы, с которых уборка осуществляется машинами с пневматическим забором мусора в кузов	200	2500	200	30	45	75	0,1	0,3	0,1	
4	Автомагистрали с интенсивным движением грузового автомобильного транспорта	1300	2700	1300	60	65	100	0,2	0,3	0,2	

 Π римечание. Для определения количества нефтепродуктов, поступающих на очистное сооружение, рекомендуется вводить коэффициент K = 0,4 к данным по содержанию эфирорастворимых веществ.

цы магистральные, местные; внутриквартальные территории) и характера стока (интенсивность, продолжительность, начало, середина, конец стока, продолжительность сухого периода).

На основании анализов отбираемых проб поверхностного стока должны быть выведены расчетные показатели по загрязнениям всех видов поверхностных вод.

- 3.2. Содержание загрязнений в воде, протекающей по коллекторам дождевой канализации, в сухое время при отсутствии моечных вод должно определяться на основании анализов проб этой воды.
- 3.3. Степень очистки воды на очистных сооружениях следует определять расчетом и принимать не ниже значений, приведенных в табл. 2 и 3.

Таблица 2

№ п.п.	Вид загрязнений	Степень очистки воды в прудах от- стойниках, % количества поступа- ющих загрязнений, при расчетном времени отстоя воды, ч							
		2	4	6	8	10			
1 2	Взвешенные вещества Пефтепродукты при содер-	80	85	90	95	95			
3	жании, мг/л: до 50 до 100 Плавающий мусор	80 85 100	80 85 100	90 87 100	90 90 100	90 90 100			

Таблица 3

№ п.п.	Вид загрязнений	Степень очистки воды в сооружениях закрытого типа. % количества поступающих загрязнений, при расчетном времени отстоя воды
1 2	Вэвешенные вещества Нефтепродукты при содер-	80 80 WHR
3	жании, мг/л: до 50 до 100 Плавающий мусор	80 80 100

3.4. Время отстоя воды $T_{\text{отст}}$, ч, следует принимать: для прудов-отстойников — не менее 2; для сооружний закрытого типа — 1.

- 3 5. Для воды, поступающей в сухое время года, степень очистки от взвешенных веществ и нефтепродуктов следует принимать не менее 80%.
- 3.6. Для стационарных щитовых заграждений принимается полная очистка воды от плавающего мусора; степень очистки воды от в нешенных веществ и нефтепродуктов настоящей Инструкцией не нормируется.

4. РАСЧЕТ ОЧИСТНЫХ СООРУЖЕНИЙ

4.1. Гидрологические, гидравлические и санитарнотехнические расчеты проектов очистных сооружений должны состоять из следующих разделов:

определение расчетных расходов загрязненной части дождевых вод;

определение объема всех видов вод, поступающих на очистное сооружение;

определение размеров очистного сооружения;

определение количества загрязнений, задержанных в очистном сооружении.

4.2. Исходными данными для расчета очистных сооружений являются:

площадь водосборного бассейна в расчетном створе

и гидравлический расчет коллектора; расчетные концентрации загрязнений поверхностных

вод;

принятая степень очистки загрязненных вод.

Расчетные расходы и среднегодовые объемы воды, направляемой на очистные сооружения

- 4.3. Для расчета очистных сооружений следует принимать норму интенсивности стока дождевых вод $q_c = 4,5$ л/с с 1 га при расчетной продолжительности дождя T = 20 мин. При этой норме период превышения расчетной интенсивности дождя будет иметь значение P в зависимости от климатических характеристик географических районов.
- 4.4. Расчетный расход следует определять как сумму расхода дождевых вод и расхода других вод, протекающих по коллектору дождевой канализации, при возможности совпадения этих расходов во времени.
- 4.5. Расход дождевых вод Q, π/c , следует определять по формуле

$$Q = q_{c} \gamma F, \tag{1}$$

где q_c — интенсивность дождевого стока, л/с с 1 га;

η — коэффициент, учитывающий неравномерность выпадения дождя по площади, определяется по табл 4; F — площадь стока, га

Таблица 4

Площадь стока, га	50	100	200	300	500	1000	2000
Зпачение коэффи- циента п	0,99	0,98	0,97	0,96	0,94	0,91	0,86
Площадь стока, га	3000	4000	5000	10 000	20 000	30 000	-
Значение коэффи-	0,83	0,80	0,78	0,73	0,68	0,65	

Примечание. При площади бассейна до 50 га коэффициент

Территории садов и парков, расположенные вне кварталов и микрорайонов, из площади стока исключаются.

4.6. Расчетную интенсивность дождевых вод, л/с, следует определять по формуле

$$q_{\rm c} = 4.5 \, \frac{20^n}{T^n} \,, \tag{2}$$

где п - параметр, определяемый по прил. 4;

Т — расчетная продолжительность дождя, мин.

Интенсивность дожденых вод в зависимости от величины n и T принимается по табл. 5 и прил. 7.

Таблица 5

ĺ	Величина $q_{\rm C}$, $\pi/{\rm C}$, в зависимости от значения параметра n									
<i>T</i> , мин	n = 0.5	n = 0.55	n = 0.6	n = 0.65	n = 0.7	n = 0.75				
20 21 22 23 24 25 26 27 28 29	4,5 4,4 4,3 4,2 4,1 4 3,95 3,9 3,8 3,75	4,5 4,4 4,3 4,2 4,1 4 3,9 3,8 3,75 3,7	4,5 4,4 4,25 4,15 4 3,95 3,85 3,75 3,7 3,6	4,5 4,35 4,25 4,1 4 3,9 3,8 3,7 3,6 3,5	4,5 4,35 4,2 4,1 3,95 3,85 3,75 3,65 3,55 3,55	4,5 4,35 4,2 4,05 3,9 3,8 3,7 3,6 3,5 3,4				

	Величии	a q _c , л/с,	в зависимо	טכדוו סר זווט	<i>Тродолжен</i> чения пара	
Т, мнн.	n = 0.5	n = 0.55	n = 0.6	n = 0.65	n=0.7	n=0.75
30 31 32 33 34 35 36 37 38 39 40 44 46 48 50 50 50 50 110 120 130 140 150 160 170 180 190 220 240 240 250 320 320 340 350 360 360 360 360 360 360 360 360 360 36	3,655 3,554 3,333 3,335 3,335 3,335 3,335 3,35 3,	3,655 3,55 3,35 3,35 3,35 3,35 3,35 3,35	3,45 3,45 3,35 3,15 3,15 3,15 3,15 3,15 3,15 3,1	3,45 3,45 3,25 3,17 3,95 3,17 3,03 3,22 2,19 1,75 1,65 1,13 1,13 1,04 1,99 1,75 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,1	3,355 3,15 3,255 3,37,105 3,885 3,105 3,885 3,105 3,885 3,105 3,885 3,10	3,3 3,17 3,05 3,17 3,05 2,85 2,76 2,76 2,185 1,76 1,43 1,21 1,05 0,88 0,76 0,63 0,55 0,55 0,55 0,55 0,55 0,55 0,55 0,5

	Величина $q_{\rm c}$, n /c, в зависимости от значения параметра n										
Т, мип	n = 0,5	n == 0,55	n = 0.6	n = 0.65	n = 0.7	n = 0.75					
550 600 700 800 900 1000 1200 1400 1600	0,85 0,8 0,75 0,7 0,67 0,63 0,6 0,55 0,5	0,73 0,7 0,65 0,6 0,55 0,5	0,6 0,57 0,53 0,5	0,53 0,5							

Примечание. Расчетные интенсивности подсчитаны для условий стока с жилых районов и микрорайонов.

4.7. Расчетную продолжительность дождя T, мин, следует принимать равной времени протекания воды по поверхности и трубам от наиболее удаленного участка водосборного бассейна до очистного сооружения и определять по формуле

$$T = \left(t_{\text{конц}} + 1.2 \,\Sigma \, \frac{l_{\text{тр}}}{v_{\text{тр}} \cdot 60}\right) K_1. \tag{3}$$

где $t_{\text{новц}}$ — время поверхностной концентрации дождевого стока при отсутствии внутриквартальных дождевых сетей следует определять по расчету и принимать в населенных местах равным не менее 10 мин; при наличии внутриквартальных закрытых дождевых сетей — равным 5 мин;

 $l_{\rm TP}$ — длины расчетных участков коллектора, м;

 отр — скорости течения воды на соответствующих участках, м/с, при полном наполнении труб;

 K_1 — коэффициент, учитывающий увеличение времени протекания при уменьшении расхода воды, направляемой на очистные сооружения (принимается по табл. 6 в зависимости от величины q_{20}).

Таблина 6

q ₂₀	,	'					<u> </u>			·	'	
K ₁	l	1,22	1,37	1,53	1,62	1,72	1,89	1,98	2,06	2,28	2,49	2,97

Карта значений величин интенсивности q_{20} дана в прил. 3.

При расстоянии от границы водосбора до начала коллектора более 150 м к расчетной продолжительности

дождя следует добавлять время протекания воды по лоткам дорог T_n , мин, определяемое по формуле

$$T_{\pi} = 1,25 \frac{l_{\pi}}{v_{\pi} \cdot 60}$$
, (4)

где l_{π} — длина лотка, м, принимаемая на 150 м меньше расстояния от границы бассейна до начала коллектора; v_{π} — скорость течения воды по лотку, м/с.

При T < 20 мин расчетную продолжительность дождя принимать равной 20 мин.

4.8. Для ориентировочных расчетов расход дождевых вод допускается определять по формуле

$$Q = q_{y\pi} F K_2, \tag{5}$$

где q_{yg} — удельный расход дождевых вод, л/с с 1 га, определяемый в зависимости от площади стока по табл. 7;

К₂ — коэффициент, учитывающий изменение удельного расхода в зависимости от среднего уклона коллектора (или поверхности по трассе) и принимаемый по табл. 8.

Таблица 7

	В	еличин	ia qy	д. л/с.	в за	зисимо	сти о	г знач	ения :	парам	етра п	
	n ==	0,5	n =	$0.55 \mid n = 0.6 \mid n = 0.65 \mid$			n = 0.7		n =	0.75		
F, ra	при времени поверхностной концентрации ¹ конц, мин											
	5	01	5	10	5	10	5	10	5	10	5	10
20	4.1	3.5	4.1	3,4	4	3,3	4	3.25	3,95	3,15	3 9	3,1
50	3,4	3	3,3	2,9	3,2	2,8	3,15	2,7	3,05	2,6	3	2,5
100 300	3 2.5	$\begin{bmatrix} 2,7 \\ 2,3 \end{bmatrix}$	$\begin{bmatrix} 2,9 \\ 2,35 \end{bmatrix}$	$\begin{bmatrix} 2,6\\ 2,15 \end{bmatrix}$	2,8 2,2	2,45	2,7	2,3 1,9	$\begin{bmatrix} 2,6 \\ 2 \end{bmatrix}$	2,2	2,5	$\begin{bmatrix} 2,1\\1&7 \end{bmatrix}$
1000	2	1,85	1,85	1,75	1,75	, , .	1,6	1,5	1,45	-,-	- , - 1	
3000 10 000	1,5	1,45	1,35	1,25 0,95	$\begin{vmatrix} 1.25 \\ 0.9 \end{vmatrix}$	1,2 0,85	1,15	0.75	1,05 0.7	0,65	0.65	0,9
30 000	0,8	0,8	0,7	0,7	0,65		0,55			0,6	0,45	

Примечания: 1. Значения q_{yx} даны для районов с q_{20} = 80 л/с. 2. Для остальных районов величины q_{yx} подсчитаны для соответствующих значений q_{20} и приведены в прил. 2.

Таблица 8

	Значение коэффициента К, в зависимости от параметра л										
' _{cp}	n = 0.5	n = 0.55	n = 0,6	n = 0.65	n = 0.7	n=0.75					
0,001 0,003 0,005 0,006 0,008 0,010	0,64 0,84 0,96 1 1,04 1,14	0,61 0,83 0,95 1 1,04 1,15	0,58 0,81 0,95 1 1,04 1,16	0,56 0,8' 0,94 1 1,05 1,18	0,53 0,78 0,94 1 1,05 1,19	0,51 0,77 0,93 1 1,05 1,21					

	Значение коэффициента К, в зависимости от параметра л										
ep ep	n = 0,5	n = 0,55	n = 0.6	n = 0.65	n = 0.7	n == 0,75					
0,015 0,020 0,025 0,030 0,035 0,040 0,045 0,050	1,26 1,35 1,43 1,49 1,55 1,61 1,66	1,29 1,39 1,48 1,56 1,62 1,68 1,74 1,79	1,32 1,43 1,54 1,62 1,7 1,77 1,83 1,89	1,35 1,48 1,59 1,69 1,77 1,85 1,92 1,99	1,38 1,52 1,65 1,75 1,85 1,94 2,02 2,1	1,41 1,57 1,71 1,83 1,94 2,04 2,13 2,22					

4.9. Расходы условно-очистных вод, протекающих по коллекторам дождевой канализации, следует определять по фактическим измерениям, которые необходимо производить зучае тремя, исключая утреннее время, в которое осуществляется массовый полив улиц и территорий кварталов населенных пунктов.

При отсутствии данных о фактическом расходе следует учитывать возможный расход в размере 0,1 л/с с 1 га площади водосбора.

4.10. Среднегодовые объемы дождевых вод, поступающих на очистные сооружения $W_{\rm д}$, м³ с 1 га, следует определять по формуле

$$W_{\pi} = 2.5 H_{\kappa} K_3, \tag{6}$$

где H_{in} — среднегодовое количество дождевых осадков, мм, определяемое по данным ближайшей метеостанции;

Кз — коэффициент, учитывающий объем дождевых вод, направляемых на очистные сооружения, и принимаемый по табл. 9.
Таблица 9

 q₂₀
 20
 30
 40
 50
 60
 70
 80
 90
 100
 120
 150
 200

 K₃
 0,96
 0,91
 0,87
 0,82
 0,78
 0,75
 0,71
 0,68
 0,65
 0,6
 0,53
 0,45

4.11. Среднегодовое количество талых вод, поступающих на очистное сооружение, $W_{\rm T}$, м³ с 1 га, следует определять по формуле

$$W_{\tau} = 8 H_{B,0} K_4, \tag{7}$$

где $H_{\text{в.c}}$ — средний слой весеннего стока, мм, определяемый по данным ближайшей метеостанции или прил. 3 к СН 435-72; K_4 — коэффициент, учитымающий объем талык вод направляемых на очистное споружение и принимаемый по табр 10

Примечание. Формулой учитывается, что 20% объема воды от таяния снега на очистные сооружения не поступают, так как часть снега вывозится с городских территорий.

Таблица 10

Вероятность	Значение коэффициента К, для различных районов песеинего стока								
превышения, %	1	2	3	4					
50 20 10 4 2	0,56 0,47 0,4 0,35 0,3	0,66 0,56 0,47 0,41 0,37	0,8 0,69 0,63 0,54 0,47	0,77 0,56 0,47 0,4					

Примечание. Карта районирования весеннего стока дана в прил 6.

4 12. Среднегодовое количество моечных вод, $м^3$, с 1 га следует определять по формуле

$$W_{\mathbf{M}} = 1, 2 W_{\mathbf{M}}, \tag{8}$$

где $W_{\mathbf{M}}$ — количество воды, л, затрачиваемой в год на поливку и мойку 1 м 2 дорог и тротуаров, определяется по данным управлений городского хозяйства.

Для приближенных расчетов объем моечных вод допускается принимать равным 150—200 м³ с 1 га в год.

4.13. Расходы дождевых вод, определяемые по пп.4.6, 4.8 и 4.10, действительны для водосборных бассейнов со средними условиями застройки, в которых плошадь водонепроницаемых поверхностей (кровли зданий, дороги, тротуары и другие площади с водонепроницаемыми покрытиями) занимает от 35 до 45% всей площади водосборного бассейна.

Для водосборных бассейнов с условиями застройки, отличающимися от средних, к указанным значениям величин следует вводить поправку, которая учитывается коэффициентом K_5 , принимаемым по табл. 11, в зависимости от процентного отношения площади водонепроницаемых поверхностей к общей площади водосборного бассейна.

								Таб	блн	ца 11
Площаль полонсиро ницаемой поверхности, % к площади бассейна	10	20	30	40	50	60	70	80	90	100
K ₅	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,2

4.14. Количество моечных вод, определенное п. 4.12, действительно для водосборов со средними условиями планировки, при которых суммариая площадь дорог, тротуаров и других водонепроницаемых покрытий (кровли зданий не учитываются) занимает 20-30% всей площади водосбора.

Для водосборов, отличающихся от средних по условиям планировки, количество моечных вод следует опводы, принимая ределять по фактическим затрагам средний коэффициент стока 0,5.

Определение размеров очистных сооружений

4.15. Размеры проточной части прудов-отстойников и очистных сооружений закрытого типа следует определять по формулам:

$$\omega = \frac{O_p}{v}; \tag{9}$$

$$=Bh_{nn}; (10)$$

$$\omega = B h_{np}; \qquad (10)$$

$$l = v T_{orcr} \cdot 3600; \qquad (11)$$

$$L = l K_6, \tag{12}$$

где Q_p — расчетный расход воды, м³/с;

v — скорость протекания воды в проточной части, м/с;

 $T_{\text{отст}}$ — время отстоя воды, ч, принимаемое в соответствии с п. 3 5;

ω — живое сечение проточной части, м²;

В — ширина проточной части, м;

 $h_{\text{вр}}$ — глубина проточной части, м; l — длина проточной части, м;

 K_6 — коэффициент, учитывающий удлинение сооружения за счет успоконтельной части, принимаемый равным 1,1-1,2;

L — общая длина проточной и успокоительной части, м.

- 4.16. Скорость протекания воды должна быть не более 0,01 м/с.
- 4.17. Ширину проточной части или отдельных секций следует принимать:

для прудов-отстойников не более 40 м,

для сооружений закрытого типа не более 4 м.

4.18. Принятые размеры проточной части быть проверены расчетом на осаждение твердых взвешенных частиц по формулам:

$$u_{\rm cp} = \frac{Q_{\rm p}}{LB} \; ; \tag{13}$$

$$p_0 = 0,05 v;$$
 (14)

$$u_{\rm cp} = \sqrt{u_{\rm o}^2 + \rho_{\rm o}^2} \,, \tag{15}$$

где иср — средняя скорость осаждения частиц, мм/с;

ро — вертикальная составляющая скорости осаждения, мм/с,

 u_{o} — гидравлическая крупность осаждаемых частиц, мм/с.

- 4.19. Размеры очистного сооружения должны обеспечивать выпадение минеральных частиц диаметром 0,05 мм с гидравлической крупностью $u_0 = 1,73$ мм/с.
- 4.20. Общая длина прогочной и успоконтельной части или длина отсека для задержания нефтепродуктов должна быть проверена расчетом на всплытие нефтяных частиц по формуле

$$L = \alpha \frac{v}{u_{\min}} h_{np}, \qquad (16)$$

где u_{\min} — скорость всплытия частиц нефтепродуктов, см/с; a — коэффициент, определяемый по п. 4.22.

4.21. Длина сооружения (или отсека) должна обеспечивать всилытие нефтепродуктов с крупностью частиц:

для прудов-отстойников — 80—100 мкм,

для сооружений закрытого типа—100—120 мкм. Скорость всплытия частиц нефтепродуктов, мкм, следует принимать:

 \approx 80 $u_{\rm min} = 0.0465 \, \text{cm/c}$.

4.22. Коэффициент α , учитывающий турбулентность и струйность потока, в расчетах для прудов-отстойников следует принимать в зависимости от отношения v.

$$u_{mln}$$
при $\frac{v}{u_{min}} = 20 \alpha = 1,75$;
при $\frac{v}{u_{min}} = 15 \alpha = 1,65$.

- В расчетах для сооружений закрытого типа с фильтрами доочистки следует принимать коэффициент а равным 1.2.
- 4.23. Щирину отсека в прудах-отстойниках для задержания пефтепродуктов рекомендуется принимать не менее 6 м.
- 4.24. Количество загрязнений, задержанных в очистном сооружении за год, следует определять исходя из начального содержания загрязнений, принятой степени очистки и объема поступающей воды.

Количество задержанных загрязнений следует определять отдельно для дождевых, талых и моечных вод, а также для других вод, поступающих на очистное сооружение.

4.25. Объем твердого осадка за год W_0 , м³ с 1 га следует определять по формуле

$$W_0 = \frac{C \Im W}{\gamma \cdot 100} F, \qquad (17)$$

где С - начальное содержание твердых взвещенных частиц, т на 1000 м³ волы;

Э - степень очистки, % начального содержания;

 W_0 — объем воды, поступающей на очистное сооружение за год,

 γ — объемный вес осадка, $\tau/м^3$; F — площадь водосбора, га.

4.26. Объем и глубину осадочной части $h_{\rm oc}$ сооружения следует определять по суммарному объему твердого осадка от всех видов вод и частоты очистки.

Расчет следует производить отдельно для весеннего снеготаяния (талые воды) и для теплого псриода (дождевые и моечные воды).

В случае работы очистного сооружения в зимний период следует учитывать также объем твердого осадка, задержанного за это время.

4.27. При определении объема и глубины осадочной части следует учитывать возможную неравномерность слоя осадка по площади.

Полученную расчетом глубину осадочной части рекомендуется увеличивать до 30%.

- 4.28. Полную глубину сооружения следует определять как сумму глубин осадочной и проточной части и превышения строительной высоты сооружения.
- 4.29. Превышение строительной высоты сооружения над расчетным уровнем воды рекомендуется принимать: для прудов-отстойников — 0,5 м;

для сооружений закрытого типа — 1 м.

4.30. Сумма всех потерь напора при прохождении расчетного расхода воды от распределительной камеры на коллекторе до выпуска в низовой участок коллектора или водоем не должна превышать разности горизонтов воды в этих местах.

Потери напора следует определять в зависимости от характера местных сопротивлений расхода и скорости течения воды.

Потери напора в мусоро- и нефтеуловителях скорости течения воды 0,01 м/с и меньше допускается не учитывать.

Потери напора в фильтрах сооружений закрытого типа следует принимать в пределах 0,25-0,5 м.

СХЕМЫ ОЧИСТНЫХ СООРУЖЕНИЙ

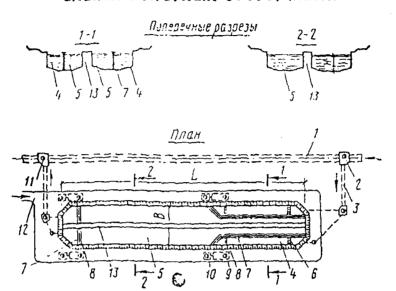


Рис. 1. Схема двухсекционного пруда-отстойника

1 — коллектор дождевой канализации; 2 — распределительная камера; 3 — подводящий трубопровод; 4 — отсек для задержания маслонефтепродуктов; 5 — секция отстойника; 6 — мусороулавливающая решетка; 7 — полупогружные щиты; 8 — приемник маслонефтепродуктов; 9 — емкость для отстанвания маслонефтепродуктов; 10 — водозаборный колодец; 11 — камера сброса очищенной воды; 12 — подъездная дорога; 13 — разделительная

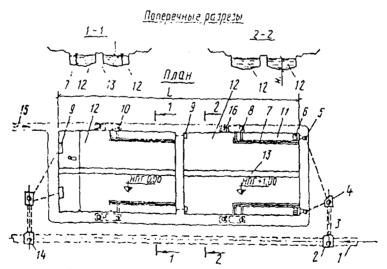


Рис. 2. Схема четырехсекционного пруда-отстойника

1— коллектор дождевой канализации; 2— распределительная камера; 3— подводящий трубопровод; 4— камера переключения; 5— рассеивающия выпуск; 6— мусороулавливающая решетка; 7— полупогружные щиты; 8— емкость для отстанвания маслонефтепродуктов; 9— водосброс; 10— прнемник маслонефтепродуктов; 11— отсек для задержания маслонефтепродуктов; 12— секция отстойника; 13— разделительная дамба; 14— камера сброса очищенной воды; 15— подъездная дорога; 16— водозаборные колодцы

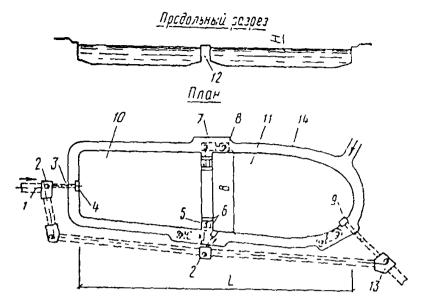


Рис. 3. Схема пруда-отстойника с секцией дополнительного отстаивания

1 — коллектор дождевой канализации; 2 — распределительная камера; 3 — подводящий трубопровод, 4 — выпуск, 5 — поворотная щелевая труба; 6 — полупогружные щиты, 7 — емкость для отстанвания маслонефтепродуктов; 8 — водозаборный колодец; 9 — водосброс; 10 — секция отстойника; 11 — секция дополнительного отстаивания; 12 — разделительная дамба; 13 — камера сброса очищенной воды; 14 — подъездная дорога

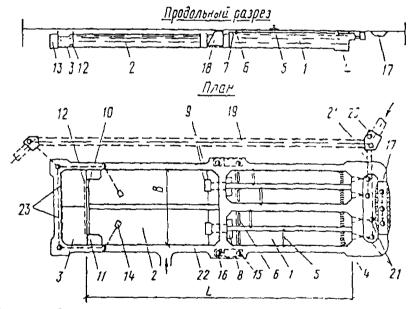


Рис. 4. Схема каскадного пруда-отстойника с фильтром 1—секция первичного отстойника; 2—секция дополнительного отстаивания; 3—фильтр доочистки; 4—'мусороулавливающая решетка; 5— приспособление для сгона маслонефтепродуктов; 6—приемник маслонефтепродуктов; 7—полупогружные щиты; 8—водосброс; 9—рассеивающий выпуск; 10—водослив: 11—подосброс для работы в зимпий периол. 12—пислевая труба; 13—галерея для сброса очищенной воды; 14—донный выпуск; 15—емкость для отстаивания маслонефтепродуктов; 16—водозаборный колодец; 17—площадка с фильтром для складирования твердого осадка; 18—разделительная дамба; 19—коллектор дождевой канализации; 20—распределительная камера; 21—подводящий трубопровод; 22—подъездная дорога; 23—отверстия для выпуска воды из фильтра в галерсю

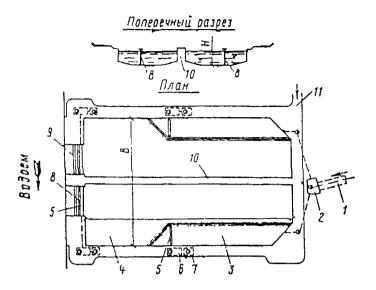


Рис. 5. Схема пруда-отстойника на сопряжении с водо-

Коллектор дождевой канализацин;
 2 — распределительная камера;
 3 — отсек для задержания маслонефтепродуктов;
 4 — секция отстойника;
 5 — приемник маслонефтепродуктов;
 6 — емкость для отстанвания маслонефтепродуктов;
 7 — водозаборный колодец;
 8 — полупогружные щиты;
 9 — разборная плотина;
 10 — разделительная дамба,
 11 — подъездная дорога

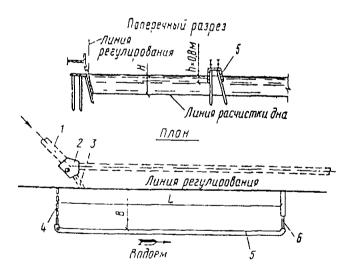


Рис. 6. Схема стационарного щитового заграждения

1 — коллектор дождевой канализации; 2 — распределительная камера; 3 — подводящий трубопровод; 4 — плавающее бонное заграждение; 5 — железобетонная навесная стенка; δ — щитовой затвор

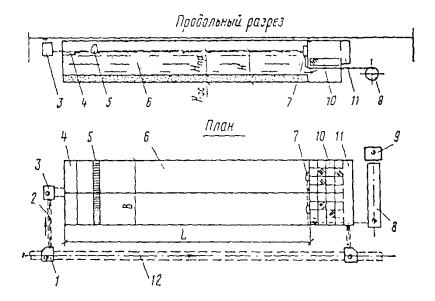


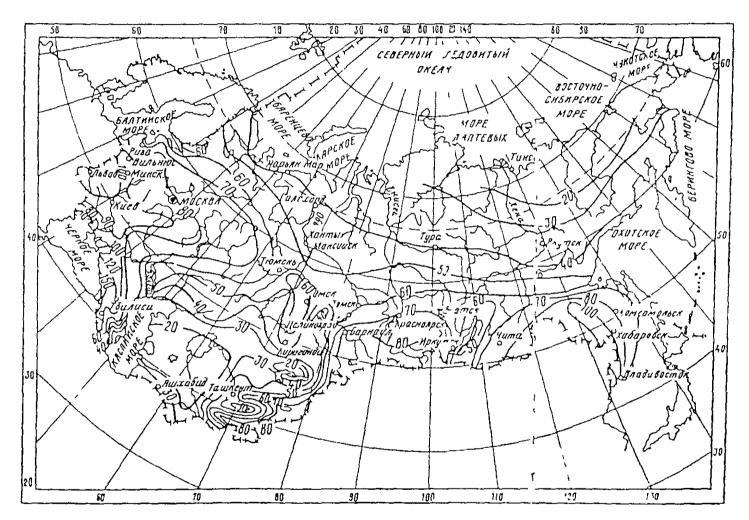
Рис. 7. Схема двухсекционного очистного сооружения закрытого типа

1 — распределительная камера;
 2 — подводящий трубопровод;
 3 — камера переключения;
 4 — распределительный лоток;
 5 — мусороулавливающая решетка;
 6 — секция отстойника;
 7 — приемник маслонефтепродуктов;
 8 — емкость для отстанвания маслонефтепродуктов;
 9 — водозаборный колодец;
 10 — фильтр доочистки;
 11 — галерея для сбора очищенной воды;
 12 — коллектор дождевой канализации

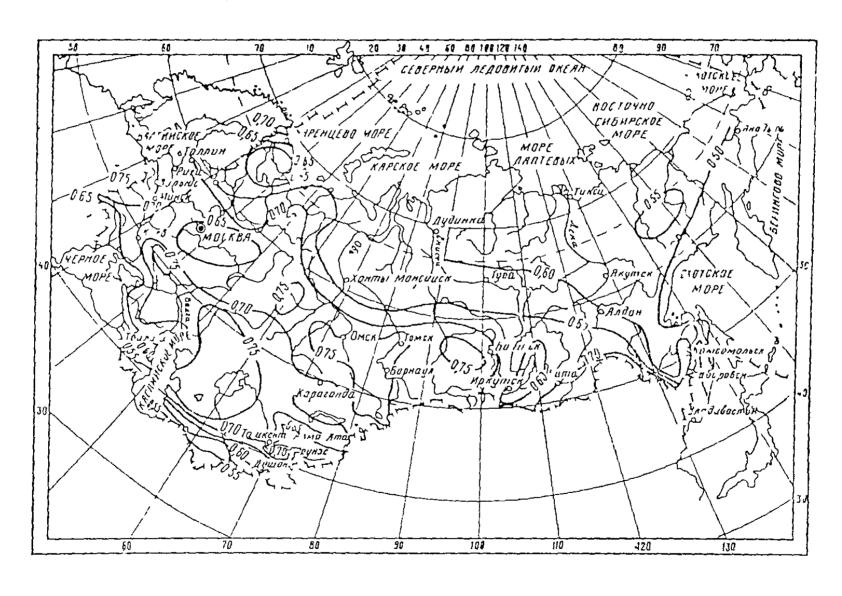
ВЕЛИЧИНЫ $q_{y\pi}$, Л/С, В ЗАВИСИМОСТИ ОТ ЗНАЧЕНИЯ ПАРАМЕТ РА л, ВРЕМЕНИ ПОВЕРХНОСТНОЯ КОНПЕНТРАЦИИ I_{hogg} И ПЛОЩАДИ ВОДОСБОРНОГО БАССЕЯНА F ПРИ РАЗЛИЧНЫХ ЗНАЧЕНИЯХ q_{20}

КОНИЕ	ПРАЦИИ	IHORE II								THE DIA O		
				Величина ф	уд. л/с, в	зависимос						
	n ==	0.5	n =	0,55	n = 0.65 $n = 0.65$		0,65	n = 0.7		n = 0.75		
F, ra				при врем	ени повер	хностной	концентра	ции t конц	, мин			
	5	10	5	10	5	10	5	10	5	10	5	10
	<u> </u>			1.	$q_{2} = 20$) л/с с	1 га					
20 50 100 300 1000 3000 10 000 30 000	4,5 4,5 4,15 3,45 2,70 2,1 1,5	4,5 4,15 3,75 3,2 2,6 2 1,45	4,5 4,5 4,15 3,4 2,6 2 1,4 0,95	4,5 4,15 3,7 3,1 2,45 1,9 1,35 0,95	4,5 4,5 4,1 3,3 2,5 1,85 1,3 0,9	4,5 4,1 3,65 3 2,35 1,8 1,25 0,9	4,5 4,5 4,05 3,2 2,4 1,8 1,2 0,85	4,5 4,05 3,6 2,9 2,25 1,7 1,15 0,85	4,5 4,5 4,05 3,15 2,3 1,7 1,1 0,75	4,5 4,05 3,55 2,85 2,15 1,60 1,05 0,75	4,5 4,5 4,05 3,1 2,2 1,6 1,05 0,7	4,5 4 3,5 2,75 2 1,5 1 0,7
					2. $q_{20} = 3$	80 л/сс I	га					
20 50 100 300 1000 3000 10 000 30 000	4,5 4,25 3,75 3,1 2,45 1,9 1,35	4,35 3,75 3,4 2,9 2,35 1,85 1,3	4,5 4,25 3,7 3 2,35 1,8 1,25 0,9	4,35 3,7 3,3 2,8 2,2 1,7 1,15 0,9	4,5 4,20 3,65 2,95 2,2 1,65 1,15 0,85	4,3 3,65 3,2 2,7 2,1 1,6 1,1 0,85	4,5 4,2 3,6 2,9 2,1 1,55 1,05 0,75	4,3 3,6 3,15 2,6 2 1,5 1	4,5 4,15 3,55 2,8 2 1,5 0,95 0,65	4,25 3,55 3,05 2,5 1,9 1,35 0,9 0,65	4,5 4,15 3,5 2,7 1,9 1,4 0,9 0,6	4,25 3,5 3 2,4 1,8 1,3 0,85 0,6

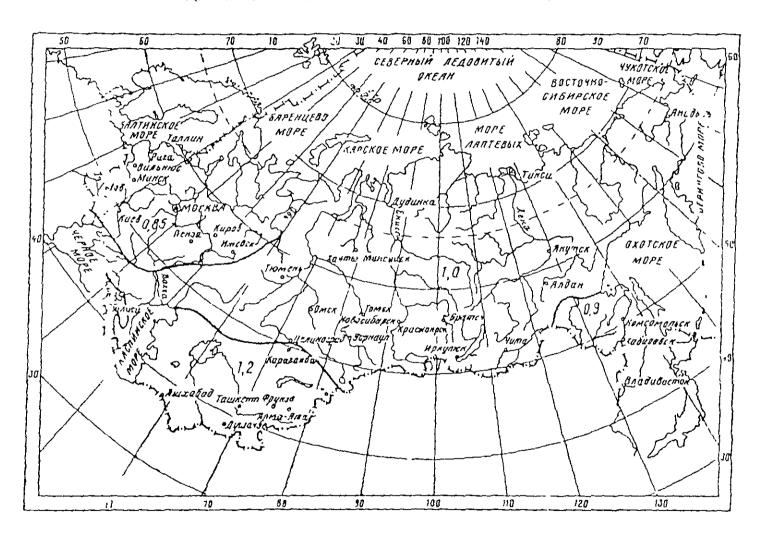
					3. $q_{20} = 4$	0 л/сс1	га					
20 50 100 300 1000 3000 10 000 30 000	4,5 4 3,5 2,9 2,35 1,8 1,3 0,95	4,1 3,5 3,2 2,75 2,2 1,7 1,25 0,95	4,5 4 3,45 2,8 2,2 1,7 1,1 0,85	4,1 3,45 3,1 2,6 2,05 1,6 1,05 0,85	4,5 3,95 3,4 2,7 2,05 1,55 1,05 0,75	4 3,35 3 2,5 1,9 1,45 1 0,75	4,5 3,9 3,35 2,6 1,95 1,45 1 0,7	4 3,25 2,95 2,3 1,8 1,4 0,95 0,7	4,5 3,85 3,25 2,5 1,9 1,3 0,9 0,6	3,95 3,2 2,8 2,25 1,75 1,25 0,85 0,6	4,5 3,8 3,2 2,4 1,8 1,25 0,85 0,55	3,9 3,15 2,7 2,1 1,6 1,2 0,8 0,55
4 q ₂₀ =50 π/c c l га												
20 50 100 300 1000 3000 10 000 30 000	4,50 3,8 3,35 2,8 2,2 1,7 1,25 0,9	3,90 3,35 3 2,6 2,1 1,65 1,2 0,9	4,50 3,75 3,25 2,65 2,05 1,55 1,1 0,8	3,80 3,25 2,95 2,5 2 1,5 1,05 0,8	4,50 3,7 3,15 2,55 1,9 1,45 1,05 0,75	3,75 3,15 2,85 2,35 1,8 1,4 1	4,5 3,6 3,05 2,4 1,8 1,35 0,95 0,65	3,7 3,05 2,75 2,2 1,75 1,3 0,9 0,6	4,5 3,55 3 2,35 1,7 1,25 0,85 0,55	3,65 2,65 2,1 1,65 1,15 0,8 0.55	4,5 3,5 2,95 2,2 1,6 1,15 0,75 0,5	3,6 2,95 2,55 2 1,5 1,05 0,75
					$5 q_{20} = 6$	0 л/сс	Га					1
20 50 100 300 1000 3000 10 000 30 000	4,45 3,7 3,25 2,75 2,15 1,65 1,2 0,9	3,8 3,25 2,9 2,5 2,05 1,6 1,15 0,85	4,45 3,65 3,15 2,6 2 1,55 1,1 0,8	3,75 3,15 2,8 2,35 1,9 1,45 1,05 0,75	4,45 3,55 3,05 2,5 1,85 1,4 1	3,65 3,05 2,7 2,2 1,75 1,35 0,95	4,4 3,45 3 2,3 1,75 1,35 0,9 0,6	3,55 3 2,6 2,1 1,65 1,25 0,85 0,6	4,4 3,4 2,9 2,25 1,65 1,15 0,8 0,55	3,5 2,85 2,5 2 1,55 1,1 0,75 0.5	4,4 3,35 2,8 2,1 1,55 1,1 0,75 0,5	3,45 2,8 2,4 1,9 1,45 1,05 0,7 0,45

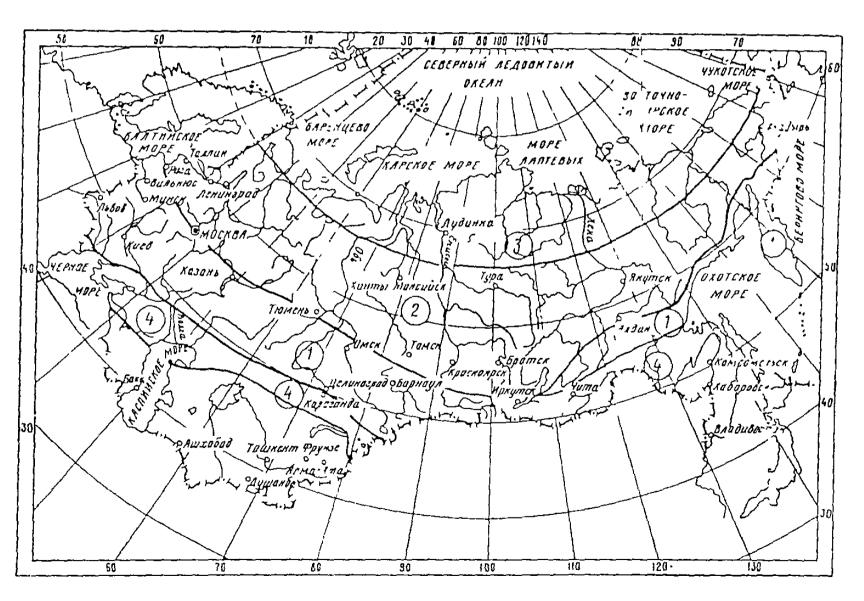

 			Велич	ина ^д уд.	л/с, в зав	нсимости	от значен	ня парам	етра п			e upun. 2	
F.	/1 ma	0,5	T	× 0,55	л =	= 0,6	n ==	0.65	n =	= 0.7	n =	= 0,75	
F _{ra} ,			при в	времени поверхностной концентрации $t_{ m KC}$				онц инн	ним рно				
	5	10	5	10	5	10	5	10	5	10	5	10	
					6 $q_{20} =$	70 л/с с	l ra	·			- 		
20 50 100 300 1000 3000 10 000 30 000	4,3 3,55 3,15 2,6 2,05 1,6 1,15 0,85	3,7 3,1 2,85 2,45 2 1,55 1,1 0,85	4,3 3,5 3,05 2,5 1,95 1,5 1,05 0,75	3,6 3,05 2,7 2,3 1,85 1,4 1	4,25 3,4 2,95 2,35 1,8 1,35 0,95 0,7	3,5 2,95 2,6 2,15 1,75 1,3 0,9 0,65	4,25 3,35 2,85 2,2 1,7 1,25 0,85 0,6	3,45 2,85 2,45 2,05 1,6 1,2 0,8 0,6	1,2 3,25 2,75 2,1 1,6 1,1 0,75 0,55	3,4 2,75 2,35 1,95 1,45 1,05 0,7 0,5	4,2 3,2 2,7 2 1,5 1,05 0,7 0,45	3,3 2,7 2,25 1,85 1,35 1 0,65 0,45	
					7. $q_{20}=9$	90 л/с с	га						
20 50 100 300 1000 3000 10 000 30 000	4 3,35 2,9 2,45 1,9 1,45 1,1 0,8	3,4 2,95 2,65 2,25 1,8 1,4 1,05 0,8	4 3,25 2,8 2,3 1,75 1,3 1 0,7	3,3 2,85 2,55 2,15 1,7 1,25 0,95 0,7	3,95 3,15 2,7 2,15 1,65 1,25 0,85 0,6	3,2 2,75 2,4 1,95 1,55 1,2 0,8 0,6	3,9 3,05 2,6 2,05 1,55 1,15 0,75 0,55	3,1 2,6 2,25 1,9 1,45 1,1 0,7 0,5	3,85 3 2,5 1,95 1,4 1,05 0,7 0,45	3,05 2,5 2,15 1,8 1,3 1 0,65 0,45	3,8 2,9 2,4 1,85 1,3 0,95 0,65 0,4	3 2,4 2,05 1,7 1,2 0,9 0,6 0,4	

					$8 q_{20} = 1$	00 л/с с	l ra					
20 50 100 300 1000 3000 10 000	3,95 3,3 2,9 2,4 1,9 1,45 1,05 0,8	3,35 2,9 2,6 2,2 1,8 1,4 1	3,9 3,2 2,75 2,25 1,75 1,25 0,95 0,7	3,25 2,75 2,5 2,1 1,65 1,2 0,9 0,65	3,85 3,1 2,65 2,1 1,6 1,2 0,85 0,6	3,15 2,65 2,3 1,9 1,55 1,15 0,8 0,6	3,8 3 2,5 2 1,5 1,1 0,75 0,5	3,05 2,5 2,2 1,8 1,45 1,05 0,7 0,5	3,75 2,9 2,4 1,9 1,4 1 0,7 0,45	3 2,45 2,1 1,75 1,25 0,95 0,65 0,45	3,7 2,8 2,35 1,8 1,3 0,95 0,6 0,4	2,9 2,3 2,05 1,65 1,15 0,9 0,55 0,4
					$q q_{20} = 1$	20 л/с с	1 ra					<u> </u>
20 50 100 300 1000 3000	3,75 3,05 2,75 2,25 1,8 1,4	3,1 2,7 2,5 2,15 1,7 1,35 0,95	3,7 3 2,65 2,15 1,65 1,2 0,9	3,05 2,6 2,35 2 1,5 1,15 0,85	3,6 2,9 2,5 2 1,55 1,15 0,8 0,55	2,95 2,45 2,2 1,90 1,4 1,1 0,75 0,55	3,5 2,8 2,35 1,9 1,45 1 0,7 0,5	2,85 2,3 2,1 1,7 1,3 0,95 0,65 0,5	3,45 2,7 2,25 1,75 1,25 0,95 0,65 0,45	2,75 2,2 2 1,6 1,2 0,9 0,6 0,4	3,4 2,6 2,1 1,65 1,15 0,85 0,55	2.7 2,1 1,85 1,5 1,1 0,8 0,5 0,35

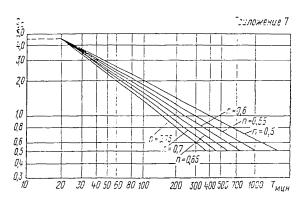

										11000	должени	е прил. 2
	1		Вел	ичниа д уд.	л]с. в зац	нсимости	or snave	ия парам	етра п			
	n ==	0,5	n ==	0,55	n=	0,6	n =	0,65	n =	0.7	n ==	0.75
F_{i} ra	(при времел	ін поверхі	остной ко	ицентраці	ни [/] кони.	мии			····
	5	10	5	10	5	10	5	10	5	10	5	10
				1	10. q ₂₃ =	150 л/с с	l ra					
20 50 100 300 1000 3000 10 000 30 000	3,6 2,95 2,65 2,15 1,7 1,35 0,95 0,7	3 2,6 2,35 2 1,6 1,3 0,95 0,7	3,55 2,85 2,55 2 1,55 1,2 0,85 0,6	2,9 2,45 2,2 1,85 1,4 1,15 0,85 0,6	3,45 2,75 2,4 1,85 1,45 1,1 0,75 0,55	2,8 2,3 2,05 1,75 1,35 1,05 0,75 0,55	3,35 2,6 2,25 1,75 1,35 1 0,7 0,45	2.7 2.2 1,95 1,65 1,25 0,95 0,65 0,45	3,3 2,5 2,15 1,65 1,15 0,85 0,6 0,4	2,6 2,1 1,85 1,5 1,1 0,8 0,6 0,4	3,2 2,4 2,05 1,55 1,1 0,8 0,55 0,35	2,5 2 1,7 i,4 1,05 0,75 0,5 0,35
				!	11. 925=5	200 л/с с	l ra					
20 50 100 300 1000 3000 10 000 36 000	3,3 2,7 2,4 2 1,6 1,2 0,9 0,65	2,75 2,4 2,2 1,8 1,5 1,15 0,85 0,65	3,2 2,6 2,25 1,85 1,35 1,1 0,8 0,55	2,65 2,25 2,05 1,7 1,3 1,05 0,75 0,55	3,1 2,45 2,1 1,7 1,3 1 0,7 0,5	2,55 2,1 1,9 1,55 1,25 0,95 0,65 0,5	3 2,3 2 1,6 1,2 0,90 0,6 0,4	2,35 2 1,75 1,45 1,1 0,85 0,55 0,4	2,9 2,2 1,9 1,5 1,1 0,8 0,5 0,35	2,25 1,9 1,6 1,25 1 0,75 0,5 0,35	2,8 2,1 1,7 1,45 1 0,7 0,45 0,3	2,15 1,75 1,5 1,2 0,9 0,65 0,45 0,3

ПРИЛОЖЕНИЕ 3


КАРТА ЗНАЧЕНИЙ ВЕЛИЧИН ИНТЕНСИВНОСТИ q_{20}


КАРТА ЗНАЧЕНИЯ ВЕЛИЧИН ПАРАМЕТРА л

КАРТА ЗНАЧЕНИЙ ВЕЛИЧИН КОЭФФИЦИЕНТА С



КАРТА РАПОНИРОВАНИЯ СНЕГОВОГО СТОКА

ПРИЛОЖЕНИЕ 7

ГРАФИК ИНТЕНСИВНОСТЕЙ СТОКА В ЗАВИСИМОСТИ ОТ РАСЧЕТНОЙ ПРОДОЛЖИТЕЛЬНОСТИ T И ПАРАМЕТРА π

СОДЕРЖАНИЕ

	Стр.
1. Общие положения	3
2. Очистные сооружения	8
3. Расчетные показатели по загрязнениям поверхностных вод	
и степени их очистки	9
4. Расчет очистных сооружений	12
Приложение 1. Схемы очистных сооружений	22
Приложение 2. Величины q_{yz} , л/с, в зависимости от значения	
параметра л, времени поверхностной концен-	
трации $t_{\kappa \circ \kappa \eta}$ и площади водосборного бассейна	
F при различных значениях q_{20}	26
$\it Приложение 3.$ Карта значений величии интенсивности q_{20} .	31
Приложение 4. Карта значений величин параметра n	32
Приложение 5. Карта значений величии коэффициента C	33
Приложение б. Карта районирования снегового стока	34
Приложение 7. График интенсивностей стока в зависимости от	
расчетной продолжительности T и параметра $m{n}$	35

Госстрой СССР

Временная инструкция по проектированию сооружений для очистки поверхностных сточных вод СН 496-77

Редакция инструктивно-нормативной литературы Зав. редакцией Γ . A. Жигачева Редактор \mathcal{N} . Γ . Бальян Мл. редактор \mathcal{N} . M. Климова Технический редактор \mathcal{T} . \mathcal{B} . Кузнецова Корректоры Γ . A. Кравченко, \mathcal{N} . Π . Бирюкова

Сдано в набор 27.X — 1977 г. Подписано к печати — 5.1 — 1978 г. Формат 84×108¹/м д. л. Бумага типографская № 2 2,1 усл. печ. л. (уч.-изд. 1.86 л.)
Тираж 40 000 экз. Изд. № XII-7461 Зак. № 672.

Стройиздат 103006, Москва, Қаляевская, 23а

Подольский филиал ПО «Периодика»
Союзполиграфпрома при Государственном комитете Совета
Министров СССР по делам издательств, полиграфии
и книжной торговли
г. Подольск, ул. Кирова, д. 25

ТАБЛИЦА СООТНОШЕНИЙ МЕЖДУ НЕКОТОРЫМИ ЕДИНИЦАМИ ФИЗИЧЕСКИХ ВЕЛИЧИИ ПОДЛЕЖАЩИМИ ИЗЪЯТИЮ, И ЕДИНИЦАМИ СИ

]				
Наименованке	подлежащая изъяті	110	CH		
величины	наименов з ние	обозначе- ние	наименование	обозна- чение	Соотношение единиц
Сила; нагрузко; вес	килограмм— сила тонна— сила грамм—сила	KFC TC FC	ньютон	Н	1 κrc~9,8 H~10 H 1 π~9,8·10 ³ H~10 κH 1 rc~9,8·10 ⁻³ H~10 мH
Линейная нагрузка Поверхностиая нагрузка	килограми—сила на метр килограми—сила на квадратный метр	кгс/м кгс/м²	ньютон на метр ньютон на квад- ратный метр	H/M H/M²	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Давление	килограмм—сила на квадратный сантиметр миллиметр водяного столба миллиметр ртутного столба	кгс/см² мм вол. ст. мм рт. ст.	паскаль	Па	1 кгс/см² ~ 9,8·10 ⁴ Па ~ ~ 10 ⁵ Па ~ 0,1 МПа 1мм вод. ст. ~ 9,8 Па ~ ~ 10 Па 1 мм. рт. ст. ~ 133,3 Па
Механическое напряжение Модуль продольной упру- гости; модуль сдвига; мо- вуль объемного сжатия	килограмм—сила на квадратный миллиметр килограмм—сила на квадратный сантиметр	кгс/мм² кгс/см²	паскаль	Па	1 кгс/мм²~9,8·10° Па~ ~10° Па~10 МПа 1 кгс/см²~9,8·10° Па~ ~10° Па~0,1 МПа

	1	Единица	l			
Наименование	подлежащая изъят	онг	си	C		
36.774%	нанменование	обозна- ченне	нанменовакие	чевне обозна-	Соотношение единиц	
Удельная теплоемкость	калория на грамм— градус Цельсия килокалория на кило- грамм—градус Цельсия	кал/ /(г·°С) ккал/ /(кг·°С)	джоуль на кило- грами—кельвин	Дж/(кг× ×К)	l кал/(r·°C)~4,2 10 ² Дж/(кr·K) l ккал/(кг·°C)~4,2 кДж/(кг·K)	
Теплопроведность	Цельсия килокалория в час на	кал/ /(с сч·°С) ккал/ /(ч-м·°С)	ватт на метр— кельвин	Bt (w·K)	1 кал/(с·см·°С)~ ~420 Вт/(м·К) 1 ккал/(ч·м·°С)~ ~1,16 Вт/(м·К)	
Ксаффициент теплообмена (теплоотдачи); ко- эффициент теплопере- дачи	колорыя в секунду на квадратный сантиметр— градус Цельсия кнлокалория в час на квадратный метр—градус Цельсия	кал/ /(с см² x x°C) ккал (ч x ×м².°C)	ватт на квадрат- ный четр—кель- вин	Вт. (м ² × х К)	1 кал/(с·см²·°С) ~ ~42 кВт/(ч²·К) 1 ккал/(ч·м²·°С) ~ ~1,16 кВт/(м²·К)	

		Едпинц	1		
Наименование	птраси ябинаженден	ю	Cit		
всличны	экибефинен	обозна- чение	энислониек	обозна- чение	Соотношение единия
долья сичн! номенд пабт сичн! номенд	килограмм—сила—метр	КГС - М	ньютон—метр	Н-м	I кгс·м~9,8 Н·м~10 Н∙м
Работа (энергия)	килограмм—сила—метр	кгс - ы	джоуль	Дж	1 кгс-м~9,8 Дж~10 Дж
Количество теплоты	калория килокалория	кал ккал	джоуль	Дж	I кал~4,2 Дж I ккал~4,2 кДж
Мощность	килограмм—сила—метр в секунду лошадиная сила калория в секунлу килокалория в час	кгс-м/с л.с. кал/с ккал/ч	ватт	Вт	I кгс·м/с~9,8 Вт~10 Вт 1 л. с. ~735,5 Вт 1 кал/с~4,2 Вг 1 ккал/ч~1,16 Вт